दणח5
 THE JOURNAL OF STRATEGIC STUDIES GROUP

 this Issue

* Japan Sweeps South the conquest of South East Asia
* Case White - the destruction of the Polish Air Force
\star Roger Keating gives us another look at his programming techniques
* Part 2 of our directory of WWII warships in Carriers at War format.
* Chris Crawford's Balance of Power reviewed

STMA

ELECTRONIC ARTS

 2755 CAMPUS DRIVE SAN MATEO, CA. 94403 U.S.A. (415) 571-7171
BALBOA GAME CO.

630 W. WILLOW ST LONG BEACH, CA. 90806 U.S.A.

SOFTGAME SERVICES

1425 CENTURY, SUTE 105 CARROLTON, TX. 75006 U.S.A.

HOBBY CAMES INC. 661 NORTH LINCOLN AVE LINCOLNWOOD, III. 60645 U.S.A.

TEVEX INC.
1710 WILWAT DR, SUTE E NORCROSS, GA. 30093 U.S.A.

0ZISOFT

SUITE 33, 8-24 KIPPAX ST SURRY HILLS, 2010. AUSTRALIA

JEDKO GAMES
 134 COCHRANES RD MOORABBIN, 3189. AUSTRALIA

IMAGINEERING
77 DUNNING AVE ROSEBERY, 2018. AUSTRALIA

Run 5

Issue 2
 April, 1986

Editor's Chance 2
(Scenario disk offer, work in progress. . .)
Japan Sweeps South 4
A Carriers at War scenario
Case White 19A Europe Ablaze scenario
Printing a Screen Dump 25A guide for Apple owners
Programming and Game Design 26
More revelations from Roger Keating
Question and Answer Forum 28(Some player's notes as well. . .)
Balance of Power 34Chris Crawford's latest game reviewed
Warships of the World (Part Two) 37The U.S. (1942-45) and Royal Navies
The Final Countdown 48
A surprise scenario for Carriers at War

Editor lan Trout

Contributing Editors
Roger Keating Gregor Whiley Malcolm Power Mark Holman

U.S. Operations John Gleason

> Mentor Ken Trout
> Layout \& Typesetting
> Ian Trout
> Colour Artwork
> D. Walter Evans Advertising Printing Maxwell Printing Co. Pty Lid

Run 5 is published four times per year by Strategic Studies Group Ply Lid.
P.O. Box 261. Drummoyne. 2047 AUSTRALIA
(02) 8197199

1747 Orleans Coult. Walnut Creek CA. 94598

USA.
(415) 932-3019

ISSN 0816.7125
Run 5 is available wherever you buy our games or you can order il direct rom SSG. The subscription rates are shown elsewhere on this page.

EDITOR'S CHANCE

So far, so good. We've made it to a second edition. It's 48 pages this time (the Japan Sweeps South scenario takes up a lot of space!) but as to the size of future issues, it really depends on what we've got to put in. We can guarantee, however, not to let the size get below 11 pages or above 255!

I'd like to take a bit of space this issue and put down on paper some of my thoughts on the strengths of computer strategy gaming, the direction it's heading in and what Roger and I are attempting to achieve in our game designs.
Before I get started, however, please read the note on scenario disks. I'll append my remarks at the very end so you can read the important things first.

SCENARIO DISKS

In the three months or so since the first issue of Run 5 was published we have received, somewhat unexpectedly, a large number of enquiries regarding scenario disks for the magazine games. I guess not everybody gets a kick out of typing in all those numbers.
Whatever, it's not practical for us to produce scenario disks for retail sale. What we can offer, however, is a magazine/disk subscription.
To subscribe, consult the schedule of fees below and make sure you include your computer type (Apple or C-64) with your cheque or money order. A disk subscription entitles you to however many disks are necessary to complement all the scenarios in the magazine. There will be no blank save location files on a scenario disk; we'll fill them up with entertaining variations.
For those of you who don't want to spend this extra money. . . don't worry. All the data necessary to build the magazine scenarios will still be provided for you.
The following table summarizes the various subscription costs. A subscription is four issues (one year).
US subscribers should send a cheque or money order to our US office. Everyone else should send their cheque, moneyorder, Visa or Mastercard to our Australian office.
As a special offer to all current subscribers, an additional fee of $\$ 35.00$

IN AUSTRALIA

Magazine/disk sub. $=$ \$AUD 65.00
Magazine only sub. = \$AUD 15.00

IN THE UNITED STATES

Magazine/disk sub. = \$USD 65.00
Magazine only sub. = \$USD 15.00

ELSEWHERE

(Surface Post)
Magazine/disk sub. = \$AUD 70.00
Magazine only sub. = \$AUD 20.00
(Airmail Post)
Magazine/disk sub. = \$AUD 80.00
Magazine only sub. $=$ \$AUD 30.00
will upgrade their subscription. The scenario disks for all previous issues will be included with this package.
Finally, individual scenario disks can be purchased for $\$ 15.00$ each.
That just about covers the disk offer. We hope it will prove a worthwhile service.

THE DESIGN CONTEST

So far we have 27 entries, mostly for Carriers at War. By far the most popular topic is the Leyte Gulf massacre; we have 10 entries on that alone.
There's still plenty of time to enter (and plenty of untouched topics to cover, especially for Europe Ablaze). All the details are on page 33 . Have a go. . . it's really quite a lot of fun.

ORIGINS '86

This year the Origins game convention is going to be held in Los Angeles. We'll be there in strength (that means the two of us) and will be delighted to talk to any of you who take the trouble to locate us in the exhibitor's hall.
For more information on the convention, get in contact with Alan Emrich at DTI [L.A. Origins '86, P.O. Box 8399 Long Beach, CA. 90808. (213) 420-3675].
We expect to have our new Battlefront game for sale as well as the third issue of Run 5. See the work in progress notes for more details. We'll also be giving a couple of seminars, one on the state of Road to Appomattox and another more general one on computer game design.

WORK IN PROGRESS

We have two games under serious development at the moment; Road to Appomattox and Battlefront. We expect to release $R T A$ around OctoberNovember and Battlefront for the Origins Games convention in Los Angeles this July.

Road to Appomattox

The game design is shaping up splendidly. The tactical battle system is finished, the operational movement mechanisms are designed and to a large part implemented (including rail and river transport), the economic system is in a preliminary design form while the political structure is in sketch form only. The cover artwork has been completed.
There will be separate positions for about 88 players! Two Presidents, two Secretaries of War and 84 generals (46 Union and 38 Confederate). We've altered the basic unit of manpower from 1,000 men to 100 men. This allows a lot more flexibility with the tactical battle system.
Briefly, the tactical battle system works like this. Each hex on the map wherein a possible confrontation can occur is flagged by the computer. Battles are resolved one at a time. The senior commander present for each side elects to fight (attack or defend) or flee (fleeing not always being allowed, especially if you're trapped up against a river or beseiged in a fixed fortification). If a battle does ensue (i.e. at least one commander has picked attack), the computer determines the time of day it starts, the weather and the initial forces available to both sides. Information on the identity and time of arrival of reinforcements is not always reliable.
Initial deployments are now made on the battle display with each commander directing his immediate subordinates to one or more positions in the graphic display; from centre to flank, out-flank and turning movement boxes or to a general reserve.
For example, McClelland at Antietam orders Hooker's I Corps to the right flank and right out-flank boxes and Mansfield's XI Corps to the right flank and reserve boxes. Each Corps is given an attack order.
When it comes time for Hooker to deploy his divisions, he will only be permitted to deploy them in the right-flank, right outflank or general reserve boxes. He will also give each division an attack order.

If the division has a player commander, then he may modify the attack order. He cannot alter his deployment order.
Finally every commander must make a personal decision on how visible they will be during the battle; i.e. cautious, bold or reckless. Unlucky generals will be seriously wounded or killed (and there are no magic spells to bring dead men back to life in this game).
The only movement allowed during the course of the battle is from the reserve to a battle box and vice-versa. The time increments are one hour and while movement to and from the centre and flank boxes is usually immediate, the time taken to reach the out-flank and turning movement boxes can be quite variable.
Basically, combat occurs between opposite boxes with substantial advantages accruing to troops attacking the more central boxes from distant ones. The objective is to drive your opponent from the central box. Once this is done the battle is over and the side losing its centre box has lost the battle regardless of other considerations.
This is an outline of the basic system; there are literally dozens of factors taken into account when resolving combat which we think has produced an accurate and entertaining procedure. The tactical battle system is quite a challenge on its own.
We will be demonstrating this feature at Origins in July. Come along and have a look.
As for the rest of the game, there'll be more in the next issue of the magazine.

Battlefront

What is it and why are we releasing it before Road to Appomattox?
RTA is going to simulate, in considerable detail, a four year historical event on a day to day basis! To say the least, there is a lot of testing and checking to be done. One or two small miscalculations in the economic system could easily lead to some ridiculous manufacturing performances.
Battlefront is a study of corps level command on the World War II battlefield. There will be 4-8 historical scenarios included with the game as well as the most comprehensive design kit we have ever developed.
The basic unit of manoeuver will be the battalion. The battlefield will be a software variable hex grid using a scale
between 0.5 and 2 miles per hex depending on terrain and theatre of operations.
The player is cast in the role of a Corps Commander. He has at his disposal a maximum of three divisions each of which may comprise up to four regiments of four battalions as well as up to four independent battalions per division.
A full range of troop types is provided for; infantry (motorized or foot), tank, tank destroyer, assault gun, anti-tank, artillery, machine-gun, marine, airborne etc.
Orders are issued via divisional headquarters to regimental headquarters. The actual movement of the battalions is controlled by the regimental HQ.
To allow this to work properly, Roger put his brain into top gear for nearly a week. The result is an amazing routine that allows the computer to find its way from point x to point y on a hex grid, no matter how cluttered it is with impassable hexes or hex-sides. (There does have to be some solution to the maze; the computer is only nearly omnipotent.) What's more, the route it takes is never more than a hex or two longer than the most direct route.
In calculating distance, the routine takes into account the movement point cost of the terrain as well as any additional costs incurred by the presence of enemy units or hexes.
Every hex on the battlefield is either friendly to the Axis or Allied player or disputed. Movement in enemy territory is inherently much slower than friendly territory. Note that the ownership status of each hex is continually updated so that occupied territory reverts to friendly control.
The design kit allows complete freedom in the generation of units, including their movement allowances and the awarding of victory points for their destruction.
The map is composed of 13 by 7 hex elements which may be combined in rows and columns to produce a total area of 39 by 28 hexes.
Objective hexes for each side and the victory points awarded for their control are decided.
The movement point costs and combat effects for the various terrain types are selectable; even their names can be changed.

Continued on page 47

JAPAN SWEEPS SOUTH

 The Conquest of South East Asia December 1941 - March 1942 THREE SCENARIOSFORCARRIERS AT WAR By lan Trout

On the morning of December 8th, 1941, Japanese amphibious forces came ashore at Kota Bharu on the northeastern coast of the Malayan Peninsula. Force Z, comprising the powerful capital ships HMS Prince of Wales and HMS Repulse, sortied north to put an end to the invasion and sink as many of the interlopers as possible.
HMS Repulse took fourteen torpedoes and a single 550pound bomb in the space of fifteen minutes and promptly sank. HMS Prince of Wales took an hour to sink after receiving seven torpedo hits, two 1,100-pound bomb hits and several near misses. The world was stunned by the enormity, and unexpectedness, of the disaster.
It was a blow from which the Allies did not recover. . .

[^0]
THE SITUATION

At the opening of hostilities with Japan, Great Britain had been at war in Europe for two years. An almost unbroken succession of disasters against the combined might of Germany and Italy had guarranteed that precious little manpower or material could be spared for the far eastern theatre, notwithstanding the ominous and certain menace posed by an aggressive and oil-starved Japan.
The forces available to the British in Malaya to contest the Japanese advance were imbalanced and inadequate for the task. There was a complete absence of modern fighter aircraft; only a handful of obsolescent Brewster Buffaloes were operational. Of the bomber types available, the Blenheim IV was of a more or less modern design, but a chronic shortage of big, effective bombs together with crew inexperience and the lack of long range escort protection would make their employment extremely hazardous.
In terms of numbers there were more than enough ground troops to provide an adequate defense. Many of these however, especially the Indian brigades, had barely received basic training and were short of heavy weapons equipment. There were no tracked vehicles anywhere. The fortifications protecting Singapore were some of the strongest in the world. There were, alas, no high

Task Groupg
4 CA A/ Kumano (CA B 3), Mik. uni (GA 14) Mogami (CA 5) Suzuya (CA E)
3 DD
AIR FORCES
NAVAL. AIR
Task Force O
nyuos.s 9 zero. s claud, 15 Val
Seaplanes: 36 Pete

Task Force 1

Seaplaness 6 Pete, 10 Dave. 4 Jake
\angle AND BASED AIR
Theatre. 0
Tanans: 45 Zero, 12 Clatu; 29 Nell. 6 Babs
Kangshans, 45 Zero, 12 claud 54 Betty: 6 Babs
Taichung: 22 Betty, 24 Mavis
Pingtung:s. 36 Nale. 9 Dinah. 13 Babs
Hengchan" Sally, 9 Babs

Theatre. 1
Saigon:s. 54 Zero, 92 Nell. 48 Belty, 6 Babs
Kompong: 18 Nate. 180 scar. 81 Sally. 9 Babs
Takeo: 45 Nate. 18 Oscar, 81 Lily. 9 Babs.

Allied

TASK FORCE 1

(Ozawa)
Task Group 10
$2 \mathrm{BC}: \$$ Haruna ($\mathrm{BC} / 1$.
Kongo (BC 4)
3CA. \# Atago (CA 9)
Chokal (CA O)
Takao (CA 12)
Task Group 6
$1 \mathrm{CL}=\mathrm{s}$ Sendal'(Cly)
4 DO
3 Th
Task Group 7
$4 \mathrm{DD} / 4$ Sagir (DO 45)
11 Th:
Task Group 8
300 S. Shirakumo (00 49)
571

Task. Group 6
1 CA : M HOUSION (CA 30)
Clans. Boise (C. 47)
4 DO

Task Group 7

(Cl/Amarblehead (C. 12)
4 DO
Task Group 8
$5 \mathrm{DO}=4$ anroli ODR218)
TASK FORCE 2
(Doorman)
Task Group 13
 (C. 2)

5 DD
Task Group 14

2 DD
TASK FORCE 3
(Transporis")
Task Group 4
AMC: Manoora*(AMC I) 3 Th.
Task Group 5
1AMC: Kanimbla*(AMC 2) 37 H
Task Groups 9-12,15 TTH

AIR FORCES

NAVALLAIR
Task Force 0
indomilables: ISF4F4. 9 Fulnar: 12 Albacore
Seaplanes:s 3 Walius 1 Seatox
IAND BASED AIR
Theatre 0
Alor Selars: 12 F2A 3 , 12 Blen 1 f: 11 Blen IV
Singapores:4 48 F2A 3,24 Blen V: 4 Hudson: ${ }^{2}$ Vildebeest. 3 PBY-4
Kola Bharu: 12 Hudson, 12 Vilde Kuantans:s 8 Hudson, 6 Vildebeest

Theatre 1

Clark field: : $18 \mathrm{P} 40 \mathrm{~B}, 36 \mathrm{P}$. 40 E : 18 B 17 C
Nichols $=412$ P-26A. 18 P 35 A . 18 P 40 E
Daval $=418 \mathrm{~B}, 17 \mathrm{C}$
Subic Bay: 30 PBy:4
Darmins. 12 Hudson.

SCEN. 9b Japanese NAVAL FORCES
TASK FORCE O (Takag1)
Task Group 1
CLSAS Inisul(C. 5)
800
1078
Task Group 2
$2 \mathrm{CA} / 4$ Haguro (CA 6) Nachit: (CA B)
200
Task Group 3
2 CAV/. Chilose Mizuno
1 CL/A. Nagara (Cl 11)
2 DD
TASK FORCE I
(Nishimura)
Task Group 5

7 DD
$12 \boldsymbol{2}$ R
Task Group 7
$1 \mathrm{CV}=$ R Ryuio
5 CA\#\# Shokal" (CA 10), Kumano (CA 13), Mikuma (6 A 14), Mogami (CA 15), Suzuya
(CA 16)
2 DD
TASK FORCE ? (Abe)
Task Group 9
DD (s. Asagumo (DD 77)
3 Th
TASK FORCE 3
(Kondo)
Task Group 4
2 CV s. soryu, Hiryu
1 CVI : Zuitio
ICANSMaya(CA 1)
Task Group 6
$2 \mathrm{BC} /$ /Haruna BC IV Kongo (BC4)
 (CA12)
Task Group 8
$1 \mathrm{Cl}=5 \mathrm{Yu} a\left(\mathrm{Cl} \mathrm{I}_{3}\right)$
500

ORDERS OF BATTLE (Cont.)

AIR FORCES

NAVAL AIR
Task Force 0
Seaplanes's 30 Pete, 2 Dave
Task Force 1
Fiufo:s 9 Zero, 9 Claud, 15 Val 2 Jake.
Task Force 3
soryu:s. 18 zero. 27 Val. It kale
Zuiho:s 9 Zero, 9 Val, 9 kale Seaplanes: 410 pete, 2 Jake

LAND BASED AIR
Theatre 0
Alor Selar: : 17 Nate, 43 Sally.
Penang:s.17 Zero, 14 Nale: 17 Sonia. 7 Babs 8 Nate. 18 Ann 10 Nale. 11 Mary. 5 Babs
Mil's: 16 Zero, 30 Nell
Theatre 1
Davaos 59 Zero 42 Betly 23 Nell; 9 Babs
Sandarkan "s. 18 Zero, 14 Nel
Tarakan : 9 Zero, 4 Mavis. Allied
NAVAL FORCES
TASK FORCE O
(Sommerville)
Task Group 1 (Optional)
ICVIN. Hermes
BB : / Revenge (BB 06
$1 \mathrm{Cl} / \mathrm{m}$ Enterpise (CL 152)
10
Task Group 2 (Optional)
3 CA/s. Connwall (CA 56). Canberra: CA133 Leander (CI 75), Perth (CL129). Achilles (CL 70)
2.

Task Group 5 (Optional)
zCV : 4 Formidable
1 CL /am Mauritus (Cl 80)
2.0 D

TASK FORCE 1
Kendan : 4 PBY-4
Amboina:s 13 Hudson
Darwill © 10 P 40 E . 10 hudson

SCEN. 9c Japanese NAVAL FORCES

TASK FORCE O
(Kurlia)
Task Group 5
(Cl
9 DD
4 Th
Task Group 8
$1 \mathrm{Cl}=A$ Yura (Cl 13)
700
5 TR
Task Group 9
CVI/ARyuot
1 DD
Task Group 10
4 CAs/skumano* (CA 13) Mikuma (CA 14), Mogami (CA 15) Suzuya (CA 16)
3 DD
TASK. FORCE 1
(Takagi)
Task Group 4
1 Clas s/ Naka? (Cl 16)
800
3 TR
Task Group 6
2 CA: \# Haguro*($C A$ 6): Nach (CA 8)
1 DD
Task Group ?

7 DD
4 Th
TASK FORCE 2
(Kondo)
Task Group 1
4 CV:/ Kaga, Akagi; Soryu, Hiryu
2 CA s. Chikuma (CA 17), Tone": (CA 18)
Task Group 2
Class Abukuma* (Cl. 8)
7 DD
Task Group 3
2 BC : A Haruna (BC 1) Kongo
a (BC 4)
3 CAA.AAtago (CA 9), Maya (CA 11) Takao (CA 12)

NAVAL AIR
Task Force 0
Byujo:. 9 Zero, 9 Claud, 15 Val
Task Force 1
Seaplanes:s. 2 Pele. 2 Dave
Task Force 2
Kaga, , 18 Zero, $27 \mathrm{Val}, 27 \mathrm{Kale}$
Akagl, 18 zero, $27 \mathrm{Val}, 27 \mathrm{Kate}$
SoryU, 18 Zero, $27 \mathrm{Val}, 18$ Kale
Hiryu, , 18 Zero, 27 Val, 18 Kate
Seaplanes:
LAND BASED AIR
Theatre 0
Singapore, $\quad 120$ scar 17 Nale.
26 Sally, 20 Lily
alembang \& 31 Zero, 28 Nell
Oosthaven, 6 Pele, 4 Mavis
Kuching - 10 Mavis

16 Zero, 35 Belty
6 Mavis
Allied
NAVAL FORCES
TASK FORCE O
(Sommerville)
Task Group I (Optional)
4 BBA/. Royal Sovereign (BB 05),
Revenge*(BB 06).
Ramilles (BB 07):
4 DD
Task Group 2 (Optional)
3 CA/s Cornwall (CA 56),
Canberra (CAl33)
Dorsetshire*(CA 40)
DE
Task Group 3 (Optional)
(CLl88), Emerald (CLI66)
Achilles (CL 70), Glasgow
(Cl 21)
3 DO

ORDERS OF BATTLE (COMU.)

Task Group 4 (Optional)
$2 \mathrm{CV} /=$ ormidable
Indomilable\%.
$2 \mathrm{CL}=$ Leander (CL75)
Mauritius (CL 80)
200

TASK FORCE 1
(Helfilch)
Task Group 5
3.4% \& Ceres (CL159), Dragon' (CL146), Durban (CL199)

Task Group ©
2 CA, , Housion (CA 30) Exeler (CA 68)
Perti. (Cl29), Java (Cl 1). De huyter $\quad(\mathrm{CL}, 2)$, Tromp (Cl.3)
1100

TASK FORCE 2 ('Transports')
Task Group 6
$1 \mathrm{C}, ~ \& ~$ Colombo (CLI89)
3 TR

Task Group 7 :
Class. Enterpisef(CLI 52)
274 .
Task Group 10
$1 \mathrm{Cl} / \mathrm{s}=\mathrm{Marblehead}$ (Cl 12) 200
Task Group 9
1 Th
AIR FORCES
NAVALAAR
Task. Force 0
Fomidabre, , 9 F4F 4,9 seafir
12 Albacore

Indomitable: 18 F4F, 9 Seafiv,
, , , \& 12 Albacore
Hermes: 22 Abacoro
Seaplanes, " 3 Walrus, Seator
LAND BASED AIR
Theatre 0
Batavia , , , 4 Hurr, 10 P 36 A .
Y/ M139W. 6 PBY 4
Bandoeng, 11 Hurt, 5 hudson 9 Blen V
Tilatap $, ~ 9 ~ F 2 A-3,6 \mathrm{PBY} 4$
Soerabaja, , $10 \mathrm{P} .40 \mathrm{E}, 8 \mathrm{P}-36 \mathrm{~A}$, $5 \mathrm{~B}, 17 \mathrm{C}, 4$ PBYY4,
8 Hudson, 6 PB 4

JAPAN SWEEPS SOUTH - Bases (9a)

BASENUMBER	1-23	1	2	3 , \%	4	- 5	6	7	8	9	10	11	12	13	14
BASE NAME	[11]	Alor Setar:	Singapore	Kota Bharu	Kuantan	Clark	Nichols	Davao	Subic Bay	Singora	Patani	Vigan	Aparri	Legaspi	Soerabaja
LOCATION	(x, y)	14,39	21,48	17,39	19,43	60, 19	62,20	71,33	59,18	15,37,	16,38	60,15	61,12	67,21	40,67
ASSIGNED SONS	[10]	1.3	4-10	11,12	13,14	23.27	28-30	31,32.	33,34	O+	-	+ +	-	- - -	-
HEAVY AA	0.31	2	5	1	1	9.	5	2	0	0	0	0	0	2	4
LIGHT AA	0.31	8	14	8	6	15	12	6.	3	0	2	3	2	7	8
SPOT NUMBER	0.31	6.	25	4 -	4	- 24.	12	10	3	6.	4	3.	3	4	16
DAMAGE STATUS	0-15	15 ,	15	- 15 , ,	15	- 15	15	15.	15	15	15	15	15	15	15
AIRSTRIP	0-7	3	5	2 -	2	7	4	3	0	2	1	1	1	2	5
RADAR	0.7	0	3	0	0	1	0	0	0	0	0	0	0	0	0
AA ACCURACY	0.3	1	1	1	1	0	0	0	0	0	0	0	0	0	0
DAMAGE CONTROL	0.3	1.	2	1	1	1.	1	1	1	0	0	0	0	0	0
THEATRE	0-1	0	0	0 ,	0	- 1 , - , \%	1	4	1	0	0	1	1	1.	1
ALLIED	Y/N	\mathbf{Y},	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
FIGHTER FAC.	Y / N	Y	Y	Y	Y	Y	Y	Y	N	Y	Y	Y	Y	Y	Y
BOMBER FAC.	Y / N	Y	Y	Y	Y	Y	N	Y	N	N	N	N	N	N	Y
PORT FACILITIES	Y/N	Y/,	Y	Y	Y	N	Y	Y	Y	Y	Y	Y	Y	Y	Y
SEARCH PATTERN	Y / N	-	N,NE,E,SE	N,NE, ${ }^{\text {a }}$	NE, E	NW,N,NE	-	N,NE, ${ }^{\text {E }}$	W,NW,N,NE	-	-	-	-	+	-

JSS - Bases (9b)

JSS - Bases (9c)

BASE NUMBER	1-23	17.	18	19	20	21.	22	23	BASE NUMBER	1-23	1.	2	3.	4
BASE NAME	[11]	Kuaintán	Miri	Küching	Davao	Sandarkan	Tarakan	Menado	BASE NAME	[11]	Batavia	Bandoeng	Merak	Bantam Bay
LOCATION	(x, y)	19,43.	45,42	35,48	71,33	53,38:	53,43	70,46.	LOCATION	(x, y)	26,64	28,65	24,64	25,63
ASSIGNED SONS	[10]	50.53,98.	54-56	\%	57-64	65.67.	68-69	70.71	ASSIGNED SONS	[10]	7.10	11.13	\bigcirc	-
HEAVY AA	0.31	2.	0	0	5	0.	3	4.	HEAVY AA	0.31	8	3	0	0
LIGHT AA	0.31	10.4	8	2	22	10	12	15.	LIGHT AA	0.31	14	8	4	7
SPOTNUMBER	0.31	10	6	4.4	14	10	8	6.	SPOTNUMBER	0.31	16	20	5.	5
DAMAGE STATUS	0.15	15	10	4.	15	12	7	10	DAMAGE STATUS	0.15	14	15	15.	15
AIRSTRIP	0.7	4.	3	2	4	3.	2	, 3 3	AIRSTRIP	0.7	5.	5	1.	1
RADAR	0.7	0	0	0	0	0	0	0	RADAR	0.7	0	0	0	0
AA ACCURACY	0.3	1	1	1	1	1	1	$\cdots 1$	AAACCURACY	0.3	1	1	0.	0
DAMAGE CONTROL	0.3	1	2	0	2	1	0	1	DAMAGECONTROL	0.3	1	1	0	0
THEATRE	0-1	0.	0	0	1	1.	1	1	THEATRE	$0-1$	0	0	0	0
ALLIED	Y/N	N	N	N ,	N	N	N	N	ALLED	Y/N	Y	Y	Y	Y
FGHTER FAC.	Y/N	Y	Y	Y	Y	Y	Y	Y	FGGTER FAC.	Y/N	Y	Y	N	N
BOMBER FAC.	Y/N	Y	N	N	Y	Y	N	Y	BOMBER FAC.	Y/N	Y	Y	N	N
PORT FACILITIES	Y/N	Y	Y	Y	Y	Y	Y	Y	PORT FACILITIES	Y/N	Y	N	Y	Y
SEARCH PATIERN	Y/N	SE-S	S-SW	\bigcirc	SE-SW	SE-S	SE-S	SE:S.	SEARCH PATIERN	Y / N	NW: NE	-	\cdots	-
BASE NUMBER	1-23	5	6	7.	8	9.	10	11.	12×13	14	15.	16	17.	18
BASENAME	[11]	Tilatjap	Kragan	Soerabala	Darwin	Singapore	Palembang	Oosthaven:	Kuching Banjarmasin	Bali	Makassay	Kendari	Amboina	Dili
LOCATON	(x, y)	32,66\%	39,65	40,67	82,71	21,48	22,57	22,62	35,48 46,58	44,68	56,60:	64,58	78,56:	70,67
ASSIGNED SONS	[10]	14.15.	,	16.19	20-21	30.33	34-37	38.39	$40 \quad 4144$.	45	46.47 .	48-51	52.	53-54
HEAVY AA	0-31	2	0	4.	1	6.	2	0.	0 - 2.	O	2.	5	0.	0
LIGHT AA	0-31	9.	2	15	4	15.	12	5	$6 \quad \% 9$	5	9	12	4	3
SPOT NUMBER	0.31	10	3	16	10	25	14	4	$4 \quad 12$	6	8.	16	12	10
DAMAGE STATUS	0.15	15	15	13	9	15	15	15	$15 \longrightarrow 15$	8	13	15	15	9
AIRSTRIP	0.7	3.	1	5	3	5.	4	0	2×3	2	2	4	3	2
RADAP	0.7	0	0	0	0	0	0	0	0×0	0	0.	\% 0	0	0
AA ACCURACY	0.3	1.	0	1.	1	1	1	1.	$1 \quad 1$	1	1	1	1.	1
DAMAGE CONTROL	0-3	1.	0	9	1	2	2	1.	1 , 1, \%	1	$\bigcirc .1$	2	1	1
THEATRE	0.1	0	0	0	0	0	0	0.	$0 \quad 0$	0	0	0	0	0
ALLIED	Y/N	Y	Y	Y	Y	N	N	N	N	N	N	N	N	N
FGHTER FAC.	Y/N	Y	N	Y	Y	Y	Y	\boldsymbol{Y}	Y Y	Y	Y	Y	Y	Y
BOMBER FAC.	Y/N	N,	N	Y	N	Y.	Y	N	$\frac{\mathrm{N}}{\mathrm{N}}$	N	Y	Y	N	N
PORT FACILITES	Y/N	Y	Y	Y/	Y	Y	N	Y	Y , Y	Y	Y	Y	Y	Y
SEARCH PATIERN	Y/N	E.SE	-	NW.E	NW-N	SE.W	-	S-NW	SE-SW	-	SE.SW.	SE-SW	SE-SW.	E-SW

JAPAN SWEEPS SOUTH - Plane Types (All Scenarios)

PLANE NUMBER	1-63	1	2	3.	4	5.	6	7.	8	9	10	11	12	13.	14
PLANE TYPE	[5]	F2A.3:	F4F-4	P.35A.	P.36A	P-40. ${ }^{\text {P }}$	P-40E	FUL 1.	SEA 3	HUR 2	BL 1 F	P. 26 A	ALBA	HUD3A:	BLIV
ROLE	0-2.	0.	0	0	0	0.	0	0.	0	0	0	,	1	1	1
CREW	0.5	0.	0	0	0	0	0	1	0	0	2	0	2	,	2
RANGE (n, e, t)	0.31	3,6,7.	3,5,7	3,4,5	3,3,4	4,4,4	3,3,3	3,3,4;	2,3,5	1,3,5	4,6,7	1,3,4	4,5,6	7,10,12	5,7,8
ALTITUDE ($\mathrm{h}, \mathrm{m}, \mathrm{l}$)	0-3	2,3,3	2,3,2	2,3,3	2,3,3	2,3,3	1,3,3	1,3,3	2,3,3	3,3,2	1,3,3	0,3,3.	0,3,3	1,3,3.	0,3,3
CRUISING SPEED	0-15	5.	5	7	8	7.	8	7.	6	6.	7	6.	4	¢	7
BOMB LOAD	0.63	1.	1	1.	0	0.	0	0	2	4	0	1.	7	6.	4
CHAR. ($(, \mathrm{v}, \mathrm{m}, \mathrm{p})$	0.7	4,3,5,3	5,4,5,3	2,3,6;1	3,2,6,2	5,3,6,3	5,4,6,3	6,3,4,2	5,4,5,3	4,3,5,3,	5,3,2,2	2,2,7,0.	1,2,4,0	2, 3, 3, 1,	3,3,2,1
ALLIED	Y/N	Y,	Y	Y ${ }^{\text {Y }}$	Y	Y ${ }^{\text {a }}$	Y	, Y,	Y	, Y	Y	Y ${ }^{\text {Y }}$	Y	Y, ${ }^{\text {Y }}$	Y
CARRIER	Y/N	N	Y	N	N	N	N	Y	Y	N	N	N	Y	N	N
SEAPLANE	Y/N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
TORPEDO	Y/N	N	N	N	N	N	N	N	N	N	N	N	Y	N	N
NIGHT	Y/N	N	N	N	N	N	N	N	N	N	N	N	Y	N	N
ANTI SUBMARINE	Y/N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
PLANE NUMBER	1-63	15.	16	17.	18	19	20	21	23	24	25	26.	27	28	29
PLANE TYPE	[5]	M139W	B-17C	PBY-4	VILDE	SFOX	WAL 2	BFT 1	F1M2	A6M2.	G4M1	E8N2	B5N2	A5M4	G3M2
ROLE	0-2	1	1	2	1	2	2	3.	2	0	1	2	1	0.	1.
CREW.	0.5	3	5	4	1	1.	3	3	1	0	4	1.	2	0	4
RANGE ($\mathrm{n}, \mathrm{e}, \mathrm{t}$)	0.31	6,8,10,	5,11,16	15,19,24	7,9,12	4,4,4	6,6,7	8,10,13	3,4,4	7,8,10	12,16,18	5,5,6	8,10,11	3,4,6:	9,13,16
ALTITUDE ($\mathrm{h}, \mathrm{m}, \mathrm{l}$)	0.3	0,3,3	3,3,2	0,3,3	0,2,3	0,1,3	0,2,3	0,2,3,	2,3,3	2,3,3	1,3,3	0,3,3	1,3,3	2,3,3.	1,3,3
CRUISING SPEED	0.15	6.	7	,	4	3.	3	4	5	7	6	3.	5	6.	6
BOMB LOAD	0.63	8.	35	7.	4	1.	2	5.	1	0	6	1	6	1.	6
CHAR. ($f, \mathrm{v}, \mathrm{m}, \mathrm{p}$)	0.7	1,2,3,0	3,3,0,2	2,2,0,0	1,2,2,0	1,1,4,0	1,2,1,0	3,3,3,1	2,2,5,0	4,2, , , 3	2,1,1,1	2,1,3,0	1,2,3,0	2,2,6,1,	2,1,1,0
ALLIED	Y/N	Y	Y	Y	Y	Y	Y	\boldsymbol{Y}	N	N	N	N	N	N.	N
CARRIER	Y/N	N	N	N	N	N	N	N	N	Y	N	N	Y	Y	N
SEAPLANE	Y/N	N	N	Y	N	Y	Y	N	Y	N	N	Y	N	N	N
TORPEDO	Y/N	N	N	N	Y	N	N	Y	N	N	Y	N	Y	N	Y
NIGHT	Y/N	N	N	Y	N	N	N	N	N	N	N	N	N	N	N
ANTI SUBMARINE	Y/N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
PLANE NUMBER	1.63	30	31	32	33	34	35	36	37	38	39	40	41	42	43
PLANE TYPE	[5]	G3M3.	D3A2	E13A1	H6K4	C5M2	Ki48b	Ki15	Ki21b	Ki30	Ki46	Ki51	Ki27	Ki43a	Ki32
ROLE	0.2	1.	1	2	2	2	1	2	1	1	2	1.	0	0	1
CREW	0.5	4.	1	2	5	1.	3	1.	4	1.	1	1	0	0	1
RANGE (n, e, t)	0.31	9,16,21	6,7,9	7,13,15	16,25,27	10,10,12	3,8,8	10,10,12	5,8,10	5,5,7	6,6,8	4,4,6	2,4,6	2,4,4	4,6,7
ALTITUDE ($\mathrm{h}, \mathrm{m}, \mathrm{l}$)	0.3	2,3;2,	3,3,2	1,3,3,	2,3,3	3,3,3,	2,3,3	3,3,3,	2,3,3	1,3,3	3,3,2	1,3,3.	1,3,3	3,3,3.	1,3,3
CRUISING SPEED	0.15	6	5	4	4	6.	7	6%	7	7.	8	7.	7	6.	5
BOMB LOAD	0.63	6.	3	2	8	0	6	0.	8	3.	0	2	1	1.	4
CHAR. ($(, v, m, p$)	0.7	2,1,1,1	2,2,5,1	1,2,3,0	3,3,0,0	1,2,5,3	1,3,2,3	1,2,5,3	3,2,2,2	1,2,4,1,	1,2,4,4	2,2,5,1	2,2,6,2	2,3,6,2\%	1,1,5,1
ALLIED	Y/N	\cdots	N	N\%	N	\cdots	N	N	N	N	N	N,	N	N,	N
CARRIER	Y/N	N	Y	N	N	N	N	N	N	N	N	N	N	N	N
SEAPLANE	Y/N	N	N	Y	Y	N	N	N	N	N	N	N	N	N	N
TORPEDO	Y/N	Y	N	N	Y	N	N	N,	N	N	N	N	N	N	N
NIGHT	Y/N	N	N	N	Y	N	N	N ${ }^{*}$,	N	N	N	N	N	N	N
ANTI SUBMARINE	Y/N	N	N	N	N	N	N	N	N	N	N	N	N	N	N

JAPAN SWEEPS SOUTH - Map

SCENARIO 9a Japan Sweeps South
 7.11 Dec. 1941

ALLIED BASES. Alor Setat, Singapore, Kota Bharu, Kuantan, Clark, Nichols, Davao, Subic Bay, Singora, Patani, Vigan, Aparri, Legaspi, Soerabaja, Darwin

IJN BASES. Tainan (Kangshan, Pingtung), Taichung, Hengchan, Saigon, Kompong (Takeo)

SCENARIO 9b Closing the Ring 20-24 Jan. 1942

ALLIED BASES. Singapore, Djambl, Palembang, Sinkawang, Batavia, Amboina, Darwin Soerabaja, Balikpapan, Banjarmasin, Kendari, Makassar, Bandoeng Alor Setal, Penang, Kota Bharu, Kuantan, Mir, Kuching, Davao, Sandarkan, Tarakan, Menado.

SCENARIO 9C
The Last Bastion
27 Feb-4 Mar. 1942

JAPAN SWEEPS SOUTH - Ship Classes (All Scenarios)

CLASS \# (9a-9c)	1.63	-1111	1/2/2	-13/3	-14/4	21/1-	3/1.1-	15/5.	./6/6	4717	.1818	$1 / 19$	4/9/10	+1/111	.110/12
SHP CLASSNAME	[8]	CV 1937A	CV 1937B	CVL1918	BB 1913	BB 1937	BC 1915	CA 1924.	CA 1924v:	CA 1927B	CA 1928	CL 19168	CL 1916C	CL 1917	CL 1918
ALLIED	Y/N	Y(CW)	Y(CW)	Y(CW)	Y(CW)	Y(CW)	Y(CW)	$\mathrm{Y}(\mathrm{CW})$:	Y(CW)	Y(CW)	$Y(C W)$	Y(CW)	Y(CW)	Y(CW)	Y(CW)
SEAPLANE	Y/N	N	N	N	N	Y	Y	Y	N	Y	Y	N	N	N	N
SHIP TYPE	0-4	0	,	0	1	1	,	1	1	1 ,	1	2.	2	2	2
MAXIMUM SPEED	0.45	21	21	17	15	19	21	21	21	21	21	20	19	19.	22
DISPLACEMENT	0.31	12	12	5.	14	17.	16	6	6	6	4	2	2	,	4
HEAVY AA	0.31	16.	16	3	8	16	6	8.	8	8	4	8	3	1.	5
LIGHT AA	0.31	,	6	2	2	4.	2	2	1	2	0	1.	1	2	2
ARMOUR	0-15	5	5	3	13	15	7	5.	5	4.		3.	3	3	3
PRIMARY GUNS	0.15	0.	0	0	8	10	6	8	8	8	6	0	0	0.	0
SECONDARY GUNS	0.15	0	0	6	12	8.	12	4.	4	4.	2	4.	6	5.	7
TORPEDO TUBES	0.15	0	0	0	0	0	8	0	0	8.	6	0	12	,	15
VULNERABILITY	0-7	5	5	4	5	7.	5	4.	4	6	5	,	,	.	,
ANTI-SUBMARINE	0-7	0 O	0	0	0	0	0	0	0	-	0	0	0	.	0
TORPEDO:LOADS	0.3	0	0	0	0	0		0	,	2	2	0	1	2	1

CLASS \# (9a-9c)	1.63	-11113	./12/14	\%13115	-1.116	5114117	6/1.	7115/18.	-/16/19	117:120	8/18/21	9,119122	10/20/23	-1/124	11/21/25
SHIP CLASS NAME	[8]	CL 1931	CL 1931v	CL. 1933B	CL 1934	CL 1938.	AMC misc	DD 1917	DD 1928	DD 1930	DD 1933	DD 1934	DD 1937	DD 1939.	DE 1916
ALLIED	YiN	Y(CW)													
SEAPLANE	Y/N	N	N	Y	Y	Y	N	N	N	N	N	N	N	N	N
SHIP TYPE	0.4	2	2	2	2	2	4	2.	2	, 2	2	2.	2	2	2
MAXIMUM SPEED	0.45	22	22	22	21	21	10	23	23	24	24	25.	24	25.	24
DISPLACEMENT	0.31	4	4	4.	5	4	6	1.	1	1.	1	11	1	1.	0
HEAVY AA	0.31	8.	4	4.	8	8.	1	1.	0	, 1.	0	0.	6	4	1
LIGHT AA	0.31	1	1	1.	2	3.	1	0	1	\% 1	1	, 1,	2	1	0
ARMOUR	0.15	4.	4	4. ${ }^{4}$	5	4.	0	0	0	0	0	0	0	0	0
PRIMARY GUNS	0.15	0	0	0, \%	0	0	0	0	0	0.	0	0	0	0	0
SECONDARY GUNS	0.15	8.	8	8	12	9	8	2	2	2	2	2	3	0	2
TORPEDO TUBES	0-15	8	8	8	6	6	0	4	8	8	8	8	10	\bigcirc	4
VULNERABILITY	0.7	5	5	6.	5	6	1	3.	4	4	5	5	5	5	3
ANTI-SUBMARINE	0.7	0	0	0	0	0	0	1	1	, 1	1	2.	3	4	1
TORPEDOLOADS	0.3	2	2	2	2	2	0	1	1	1	1	1	1	1.	1

$\frac{\text { CLASS \# (9a-9c) }}{\text { SHIP CLASS NAME }}$	$\frac{1.63}{[8]}$														
		SS 1929	CA 1929	CL 1920	CL 193	DD 1917	SS 1918	SS 1935	SS 1937	SS 1938	CL 1916	CL 1930	CL 1935	DD 1925	DD 1927
ALLIED	Y/N	Y(CW)	Y(US)	Y(US)	Y(US)	Y(US)	Y(US)	Y(US):	Y(US)	Y(US)	Y (NE)	Y(NE)	$Y(\mathrm{NE})$	$Y(N E)$	Y(NE)
SEAPLANE	Y/N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SHIP TYPE	0.4	3	1	2	2	2	3	3.	3	3	2	2	2	2	2
MAXIMUM SPEED	0.45	12	22	23	22	23	10	13	14	14	21	21	23	24	24
DISPLACEMENT	0.31	1	5	3	5	1	0	1	1	1	3	3	2	1	1
HEAVY AA	0.31	0 \%	8	4	8	1	0	0	0	0	0	0	6	1	1
LIGHT AA	0.31	1.	0	1	1	1.	0	1	1	1	3	5.	3	1	2
ARMOUR	0.15	0	3	0.	5	0	0	0	0	0	3	2	1	0	0
PRIMARY GUNS	0.15	0	9	0 \%	0	0	0	0	0	0	0	0	0	0	0
SECONDARY GUNS	0.15	1	0	12	15	2	1	1.	1	1.	10	7	6	2	2
TORPEDO TUBES	0.15	-	0	6.	0	12	4	8	8	8.	0	0	6	6	6
VULNERABILITY	0.7	4.	3	2	4	2	0	3.	3	4.	3	4	5	4.	4
ANTI-SUBMARINE	0.7	0	0	0.	0	1.	0	0	0	0	0	0	0	1.	2
TORPEDOLOADS	0.3	2	0	2	0	1.	2	3	3	3.	0	0	1	1.	1

CLASS \# (9a.9c)	1.63	-136136	25/37/37	26/*/38	27/38/39	28/39/40	29/40/41	-1-14.2	-1-143	2.41/44	. $142 / 45$	30/43/46:	-1441.	31145\%	32/46/.
SHIP CLASS NAME	[8]	SS 1919 .	SS 1930	SS 1934	TR SMALL	TR MED	TRLARGE	CV 1921	CV 1925	CV 1935	CV 1937	CVL1931.	CVL. 1935	CAV1936:	CAV1938
ALLIED	Y/N	Y(NE)	Y(NE)	$Y(N E)$	Y	Y	Y	N	N	N	N	N .	N	N	N
SEAPLANE	Y/N	N	N	N	N	N	N	N	N	N	N	N	N	Y	Y
SHIP TYPE	0.4	3.	3	3	4	4	4	0	0	0	0	0	0	0	0
MAXIMUM SPEED	0.45	10	11	12	8	7	7	19	21	23	23	19	19	19	15
DISPLACEMENT	0.31	0×1	0	0	1	3.	7	17	17	8	9	4.	6	5	5
HEAVY AA	0.31	1	1	1	0	0	1	16	12	12	12	8	8	4	6
LIGHT AA	0.31	1	1	1	1	1	2	3	4	4 ,	4	4	1	2 \%	2
ARMOUR	0.15	0	0	0	0	0	0	11	10	2.	2	1.	0	0 .	0
PRIMARY GUNS	0.15	0	0	0	0	0	0	0	0	0 ,	0	0	0	0 ,	0
SECONDARY GUNS	0.15	0	0	0	0	0	0	14	6	6 ,	6	0	4	2	3
TORPEDO TUBES	0.15	6	8	8	0	0	0	0.	0	0	0	0	0	0	0
VULNERABILITY	0.7	2	3	4	2	2	3	0	1	2	2	1	1	2	2
ANTI-SUBMARINE	0.7	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TORPEDOLOADS	0.3	2	2	2	0	0	0	0	0	0	0	0 ,	0	0 ,	0

CLASS \# (9a-9c)	1-63	33/47147	34/48/48	5/49/49	$36 / 50 / 50$	1-1/51	38/52/52	39153/53	401.154	411-155	421.156	4315415	44/55/58	+156159	45/57/60
SHIP CLASS NAME	[8]	BC 1912	CA 1927	CA 1930	CA 1934	CA 1937	CL 1921	CL, 1923B:	DD 1919	DD 1922B	DD 1925	DD 1927	DD 1931	DD 1932.	DD 1935
ALLIED	Y/N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SEAPLANE	Y/N	Y	Y	Y	Y	Y	N	N	N	N	N	N.	N	N	N
SHIP TYPE	0.4	1.	1	1	1	1	2	2	2	2	2	2	2	2	2
MAXIMUM SPEED	0.45	20	23	23	23	23	24	23	27	25	25	23.	23	22	23
DISPLACEMENT	0.31	15	6	6.	6	6	2	3	1	1	1	1.	1	1	1
HEAVY AA	0.31	8	8	8	8	8	1	1.	0	3	2	6	4	5	5
LIGHT AA	0.31	3	1	2.	2	2	1	1	1	1.	2	1	2	1	1
ARMOUR	0.15	8.	4	5.	6	6	3	3	0	0	0	0	0	0	0
PRIMARY GUNS	0.15	8	10	10	10	8	0	0	0	0	0	0	0	0	0
SECONDARY GUNS	0-15	14.	4	4.	4	4	4	4	2	2	1	3	2	3	3
TORPEDO TUBES	0.15	0	8	15	12	12	8	8	6	4	6	9	9	6.	8
VULNERABILITY	0.7	4	4	4.	3	5.	3	3	1	2	3	3	3	4	4
ANTI-SUBMARINE	0.7	0	0	0	0	0	0	0	1	2	4	,	3	2	2
TORPEDOLOADS	0.3	0	3	,	2	2		2 ,	2	1.	1	1.	2	2	2

JSS - Ship Classes (cont.)

CLASS \# (9a-9c)	1.63	4.6158/61	47/59/62	48160\%	49/61/.	50/62\%.	51/63/63
SHIP CLASS NAME	[8]	DD 1936	DD 1938	SS 1931.	TR SMALL	TRMED	TRLARGE
ALLIED	Y/N	N	N	N	N	N	N
SEAPLANE	YIN	N	N	N	N	N	N
SHIP TYPE	0.4	2	2	3.	4	4	4
MAXIMUM SPEED	0.45	23.	23	14	7	6	6
DISPLACEMENT	0.31	1.	1	1	1	2	4
HEAVY. AA	0.31	6	6	1	0	0	0
LIGHT AA	0.31	1	1	1	1	1.	2
ARMOUR	0-15	0	0	0	0	0	0
PRIMARY GUNS	0.15	0	0	0	0	0	0
SECONDARY GUNS	0-15	3	3	0	0	0	0
TORPEDO TUBES	0-15	8	8	6.	0	0	0
VULNERABILITY	0.7	4	5	3.	2	1	1
ANTI-SUBMARINE	0.7	2	2	0	0	0	0
TORPEDOLOADS	0.3	2	2	2	0		0

JSS - Names

SCENARIO	9 a	9b	9 C
AXIS THEATRE 0	YAMASHITA	YAMASHITA	OZAWA:
AXIS THEATRE 1	HOMMA	OZAWA	
AXIS FORCE 0	KONDO	TAKAGI	KURITA
AXIS FORCE 1	OZAWA	NISHIMURA	TAKAG:
AXIS FORCE 2		ABE	KONDO
AXIS FORCE 3		KONDO	
ALLIED THEATRE 0	PERCIVAL	PERCIVAL	WAVELL
ALLIED THEATRE 1	MACARTHUR	WAVELL	
ALLIED FORCE 0	PHILLIPS	SOMERVILLE	SOMERVILTE
ALLIED FORCE 1	HART	CONVOYS	HELFRICH
ALLIED FORCE 2	DOORAMAN	HELFRICH	TRANSPORTS
ALLIED FORCE 3	TRANSPORTS	TRANSPORTS	

JAPAN SWEEPS SOUTH - Carriers

CARRIER \# (9a-9c)	1-63	4141	1/2/2	-1313.	.1.14	1. 5	. $14 / 6$	$15 / 7$	2/6/8	171\%	3/8/-	4/91\%
CARRIER NAME	[8]	Formidable	Indomitable	Herimes	Kaga	Akagi,	Soryu	Hiryu	Ryujo	Zuiho	Chitose	Mizüho.
AIR CAPACITY	Y/N	33	45	20	90	90	71	73	48	30	24	24
CLASS \# (9a-9c)	Y/N	11/1	1/2/2	-13/3	-1.142	$\underline{1 / 143}$. $141 / 44$	-142145	$30 / 43 / 46$	-1441	31/45/-	32/46/\%
TASK GROUP	0.4	+1514	3/5/4	-11/1	.1.11	\cdots	.14/1	14/1	517/9	-1/4/4	3/3/0.	31314.
ASSIGNED SQNS (9a)	0.45	\%	15-18	\% \quad,	-	, \% 4	-	-	79.81		82	83.
ASSIGNED SONS (9b)	0-31	31.33	34-37	38	-	\bigcirc	72.74	75.77.	78.80	81.83	96	97
ASSIGNED SONS (9c)	0.31	22.24	25.28	29	55.57	58.60	61.63	64,66.	67-69	\bigcirc	\cdots	$\stackrel{1}{*}$
SPOTNLMEER	0.31	3.	4	2	7	7.	6	15	4	4.	15	1.
DAMAGE STATUS	0-15	15.	15	15.	15	15.	15	15	15	15	15	15
RADAR	0.15	3.		1	0	0	0	0.	0	0	0	0.
DAMAGE CONTROL	0.15	2	2	2	1	1	1	1	1	1	1	1
AAACCURACY	0.15	,		,	1	1.	1	1.	1	1	1	1.

JAPAN SWEEPS SOUTH - Squadrons (9a)

SQUADRONNUM.	1-126	1	2	3	4	5	6	7	8	9	10	11	12	213	14	15	16	17	18	19.	20	21	22	23	24	25	26	27	28	2.9	30	31	32	33	4	35	36	37	38	39	40	41
PLANE TYPE	1.63.	114	10	1	14	14		1	13	18	17	18.	13	18	\% 13	2	2	7.	12	13.	19	20	20	5	16	16	6	6.	6	3	11	16	16	17	17	29	24	24	28	34	25	25
\# AIRCRAFT	1.63	11.	12	12.	2. 8	16	: 32	16	4	6	3	12	12	26	8	9.	9	9	12	12.	1	1.	1	18	9	9	18	18	18	18	12	9	9	15	15	36	27	18	12	6	27	27
EXHAUSTION	0.7	7.	7	7	, 7	7.	7	7	7	7	7	1	7	1.	7	7	7	7	7	7	7	1.	7	7.	7	7	7	77	7	7.	7	7	7	7.	7	7.	7	7.	7	7	7	7.
EXPERIENCE	0.3	2.	1	1	1	2	1	1	2	1	2	1	2	d.	2	2	2	2	3	2	2	2	2	1	2	2	1	1	1	1	0	1	1	1	1	3	2	3	3	3	3	2
ADMIN	0.3	0	0	0	0	0	0	0	0	0	\bigcirc	0	0	0	0	2	2	2	2	2	2	2	2	1	1	1	1	1	1	1	0	1	1	1	1	2	2	2	2	2	2	2
RECONOPS	Y/N	N	N	N	N	N	N	N	Y	N	Y	N	Y	N	Y	N	N	N	Y	Y	Y	Y	Y	N	N	N	N	N	N	N	N	N	N	Y	Y	N	N	N	N	Y	N	N
NIGHT OPS	Y/N	N	N	N.	N	N	N	N	N	N:	N	N	N	N	N	N	N	N	Y	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
CARRIER OPS	Y/N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	Y	Y	Y	Y	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SQUADRONNUM.	1-126	142	43	344	4.45	46	\% 47	48	49	50.	51	52.	253	354	455	56	\% 57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82
PLANE TYPE	1.63	24	24	428.	, 34	25	53	36	39	41	41	35.	5.37	736	6.41	41.	29	29	30	30	25	25	24	24	35	37	37	37	42	41	36	35	35	35	42	41	41	36	24	28	31	23
\# AIRCRAFT	$1-63$	27.	18	12	2. 6	27.	\% 24	13.	. 9	18.	18	27.	. 18	8 9	18	18	20	22	24	24	24	24	27	27	¢	27	27	27	18	18	9	27	27	27	18	18	27	9	9	9	15	12
EXHAUSTION	0	7.	7	7	7	7	7	7	7	7.	. 7	7.	. 7	7	7	7.	7	7	7	7	7	7.	. 7	1.	7	7	7	7	7	7.	7	7	7	7.	7	7	7	7	7	7	7	7.
EXPERIENCE	0.3	3	3	3.	3	3	2	2	2	3.	3	3	3	2	3	3.	3	3	3	2	3	,	2	3.	3	3	,	2	3	3	2	3	3	3.	3	3	3	3	3	3	3	3
ADMIN	0.3	2	2	2.	, 2	2	2	2	2	2.	2	2	2	2	2	2.	2	2	2	2.	2	2.	2	2	2	2.	2	2	2	2	2	2	2	2.	2	2	2	2	2	2	2	2
RECON OPS	Y/N	N	N	N	Y	N	Y	Y	Y	N	N	N	N		N	N	N	N	N	N	N	N	N	N	Y	N	N	N	N	N	Y	N	N	N	N	N	N	Y	N	N	N	
NIGHT OPS	Y/N	N	N	N	N	N	\% Y	N	N	N	N	N	N		N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
CARRIER OPS	Y/N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	Y	Y	Y	N

JSS - Squadrons (9b)

SQUADRON NUM.																
PLANE TYPE																
AIRCRAFT	1.63	16.3		3.3	$\frac{3.23 .2}{23}$		$\frac{23.23}{2}$	$\frac{23: 23}{2} 2$	$\frac{262}{26}$	$\begin{aligned} & 2626 \\ & \frac{26}{2} 2 \\ & \hline \end{aligned}$		$\begin{aligned} & 2626 \\ & \frac{2}{2} 2 \end{aligned}$	$\frac{26}{26}$	$\frac{323}{23}$		
EXHAUSTION																
EXPERIIENCE	0.3	3	3		3	3	3	3	3	3		3.	3	3		
ADMIN	0.3	2	2	2	2		2		2		2					
RECONO	Y/N					Y	Y	Y	Y		Y					
NIGHT OPS	Y/N		N	N	N	N	N	N	N	N	N					

SQUADRON NUM.	1.126		2	3.	4	5.	6	7	8	9	10	11	12	13	14	15		17	
PLANE TYPE	1.63	20	20	20	19	19	18	13	9	1	10	14	13	14	14	15	15	1	4
\# AIRCRAFT	1-63	1	1	1	1	1	8	5	18	9	5	10	11	18	7	8	16	7	16
EXHAUSTION	0.7	7	7	7.	7	7	5	6	7	4	6	6	7	7	5	6	7	6	7
EXPERIENCE	0.3	2	2	2	2	2	2	2	1	2	2	2	2	1	2	1	1	1	1
ADMIN	0-3	2	2	2	2	2	1	1	1	1.	1	0	0	0	0	0	1	1	1
RECON OPS	Y/N	V	Y	Y	Y	Y	N	Y	N	N	N	N	Y	N	N	N	N	Y	
NIGHT OPS	/N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	Y	
CARRIER OPS	Y/N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	

SQUADRON NUM.	1-126	19	20	21.	22	23.	24	25	26	27.	28	29	30	31.	32	33	34	35	36		38	39	40	41	42	43.	44	45	46	47	48	49	50	51	52	53	54	55	56	57	$58: 59$
PLANE TYPE	1.63	1.	15	4	16	17.	4	1	17	17.	13	13.	6	2	7	12	2	2	7	12.	12	37.	37	35	41	36	40	41	36	38	41	42	43	42	41	36	29	29.	24	29	2524
\# AIRCRAFT	1.63	14	12	10	12	6	12	10	4	4	13	10	10	9	9	12	9	9	9	12	22	24:	19	21.	17	6	17	14	7	18.	8	11	12	11\%	10	5	16	14	16	23	2130
EXHAUSTION	0-7	7	7	7	5	6	7	7	6	6	7	7	7	7	7	7	7	7	7	7.	7	6.	5	6	5	7	6	5	6	4	5	6	7	5	5	7	5	5	4	6	6
EXPERIENCE	0-3	1	1	1	3	2	1	1	2	1	1	1	1	2	2	3	2	2	2	3	2	3	3	3	3	3	3	3	3	3	3	3	2	3	3	3	3	3	3	3	3
ADMIN	0.3	1	1	1	1	1	1	1	1	1	0	1	1	2	2	2	2	2	2	2	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	2	22
RECON OPS	Y/N	N	N	N	N	Y	N	N	Y	Y.	Y	Y	N	N	N	Y	N	N	N	Y	Y	N	N	N	N	Y	N	N	Y	N	N	N	N	N	N	Y	N	N	N	N	N N
NIGHT OPS	Y/N	N	N	N	N	Y	N	N	Y	Y.	N	N	N	N	N	Y Y	N	N	N	Y		N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
CARRIER OPS	Y / N	N	N	N	N	N	N	N	N	N	N	N	N	Y	Y	\boldsymbol{Y}	Y	Y	Y	Y	Y	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N N

SQUADRON NUM.	1.126	60	: 61	62	263	64	65	566	67	68	369	7.0	71		73	74	45			778	879	80	\% 81	82	83	84	85	86	87	88	89	00	91	92	93	94	95	6.				
PLANE TYPE	1.63	24	34	25.	\% 24	24.	30	24	24	424.	33	24	33	24	31	27.	. 24	4.31	27	24	428	331	124	4:31	27	23	23	23	32	23	23	26.	23	26	26	26	32	23	23	24	24	.
\# AIRCRAFT	1.63	23	3. 9	21	117	12	14	7	11	9.	- 4	12	, 7	18.	27	18	. 18	3:27	18	\% 9	9	14	4.	9	9	3	3	.	2	2	2	2	,	2	2	2.	2	12	18	14		13
EXHAUSTION	0.7	6.	6	6	5	5	5	4.	- 5	5.	. 6	4	6	7.	7	7.	. 7	7	. 7	5	6	5	7	7	7	7	7	7.	7	7	7	7	7	7	7	7	7	7.	7	6	6	5
EXPERIENCE	0-3	3.	3	3	2	3	3	3.	3	3.	3	3	3	3	3	3.	3	3.	3	3	3	3	2	2	2	3.	3	3	3	,	3	3	2	3.	3	3	3	3.	3	3	3	3
ADMIN	0.	2	2	2	2	2	1	1.	1	0	1	0	1	2	2	2.	2	2	2	2.	2	2	, 2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2		1	
ONOPS	Y/N	N	Y	N	N	N	N	N	N	N	Y	N	Y	N	N	N.	N	N.	N	N	N	N	N	N	N	1	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	N	N	
NIGHT OPS	Y/N	N	N	N	N		N		N			N			N					N		N	N	N		N		N		N	N	N	N	N	N	N	N	N	N	N	N	
CARRIER OPS	Y/N	N	N	N	N	N	N	N	N	N	N	N	N	Y	Y	Y	Y	V	Y	Y	Y	Y	Y	Y	Y Y	N	N	N	N	N	N	N	N	N.	N	N	N		N	N		

SQUADRON NUM.	1-126		2	3	4	5.	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23.	24	25	26	27	28	29	30	31.	32	-	34	35	:36		38		40.41
PLANE TYPE	1-63	20	20	20	19	19	20	9	4	15	17	9	13	14.	-1	17	6	4	16	17	13	17.	2	8	12	2	2	8	12	12	37	35	42	41	24	24	29	29	23	33	$33: 24$
\# AIRCRAFT	1-63	1	1	1	1	1.	1	14	10	11	6	11.	5	9	9	6	10	8	5	4	8	6	9	9	12	9	9	9	12	22	26	20.	12	17	17	14	12	16.	6	4.	1012
EXHAUSTION	0-7	7	7	7.	7	7.	7	5	6	6	6	5.	5	6	6	6	7	5	5	6	7	1.	7	7	7	7	7	7	7	7.	6	7	7	6.	6	5	6	6	7	7.	7
EXPERIENCE	0-3	2	2	2	2	2	2	2	2	1	2	2	3	2	1	2	1	2	3	2	1	1	2	2	2	2	2	2	3	2	3	3	3	3	3	3	3	3	2	2	2
ADMIN	0.3	2	2	2	2	2	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	1	1	1	1	1	1	2
RECON OPS	Y / N	Y	Y	1	Y	Y	Y	N	N	N	Y	N	Y	N	N	Y	N	N	N	Y	Y	Y	N	N	Y	N	N	N	Y	Y	N	N	N	N	N	N	N	N	Y	Y	Y N
NIGHT OPS	Y/N	N	N	N	N	N	N	N	N	N	Y	N	N	N	N	Y	N	N	N	Y	N	a	N	N	Y	N	N	N	Y	Y	N	N	N	N	N	N	N	N	N	Y	$Y \mathrm{~N}$
CARPIER OPS	Y / N	N .	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	Y	Y	Y	Y	Y	Y	Y	Y	N	N	N	N	N	N	N	N	N	N	N
SQUADRONNU	-126	42	43	44	45	46.	47	48	49	50	51	52	53	54	55	56	57	58	59	60.	61	62	63	64	65	66.	67	68	69	84	85	8.	87	:88	89	9	91	92	93	94.	95:96
PLANE TYPE	1-63.	24.	30	25.	24	29	34	24	25	25.	34	33	24	34	24	31.	27	24	31	27.	24	31	27	24	31	27.	24	28	31	23	23	23	23	23	23	26	26	26.	26	26	$32: 32$
\# AIRCRAFT	1.63	14	20	22	9	14.	9	16	19	16.	9	6	12	6	18	27	27	18	27	27	18	27	18	18	:27	18	9	9	15	3	3	2	2	2	2	2	2	2	2	2	5 5
EXHAUSTION	0.7	5.	6	7.	5	6	7	5	6	6	7	7	6	6	7	7	7	7.	7	7	7	7	7	7	7	7	- 7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
EXPERIENCE	0-3	3	3	3	3	3	2	3.	3	3	2	2	3	2	3	3.	3	3	3	3	3	3	3	3	3	3	3	3	3	3.	3	3	3	3	3	3	3	3	3	3	3 3
ADMIN	0.3	1	1	1	0	1	1	2	2	2	2	1	0	0	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	22
RECON OPS	Y/N	N.	N	N	N	N	Y	N	N	N	Y	Y	N	Y	N	N	N	N	N	N	N	N	N	N	Y	N	N	N	N	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y Y
NIGHT OPS	Y / N	N.	N	N	N	N	N	N	N	N	N	Y	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N N
CARRIER OPS	Y/N	N	N	N	N	N	N	N	N	N	N	N	N	N	Y	\boldsymbol{Y}	Y	Y	Y	Y	Y	1	Y	Y	Y	Y	Y	Y	Y	N	N	N	N	N	N	N	N	N	N	N	N N

JAPAN SWEEPS SOUTH - Brief

JSS - Weather (All Scenarios)

| MAP SECTOR | $[12]$ | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CONDIION | $0-3$ | 0 | 1 | 0 | 1 | 0 | 3 | 1 | 0 | 1 | 2 | 1 | 1 |
| DIRECTION | $0-7$ | 7 | 7 | 7 | 7 | 0 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
| RELIABILITY | 0.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

SCENARIO	9a-9c	9 a	9b	9 c
START HOUR	0.23	23	23	23
DAY	1.31	7	20	27
MONTH	1-12	12	1	2
YEAR	0.55	41	42	42
DAWN	3-10	6	6	6
DUSK	15-22	19	19	19
END HOUR	0-23	22	22	33
END DAY	1-9	3	3	5
FORECAST	0.3	0	0	1

explosive shells for the 10 inch naval rifles emplaced within them which would render the guns fairly useless in the event of a land attack.
The naval forces in Singapore harbour at the outbreak of war were by far the greatest asset available to General Percival, the British Commander-in-Chief in the Far East. HMS Prince of Wales, one of the most modern and powerful battleships afloat and more than a match for any Japanese capital ship at that time in service, together with the refurbished battlecruiser HMS Repulse, presented a formidable threat to any invasion attempt. The fleet aircraft carrier, HMS Indomitable, had run aground in the Bahamas in early November and was still under repair. The absence of air defence for the British fleet was to cost dearly.
Fifteen hundred miles to the north-east of Singapore, at Manila, was the headquarters of the United States forces in the far east, under the Command of General MacArthur.
The air forces of the USAAFFE (United States Army Air Forces Far East), while a bit on the thin side, were generally of
modern types. The one hundred Curtiss Warhawk fighters would present a serious obstacle to Japanese airstrikes from Formosa, particularly in view of the distance separating the bases. Furthermore some thirty-five fourengined Boeing bombers, the redoutable Flying Fortresses, were available. Their high flight ceiling, rugged construction, formidable armament and huge payload capacity made them the doyen of the skies. The most pressing concern for the air force, and indeed the army, would be the acquisition of replacements so far from home.

As part of the Washington Naval Treaty, the United States had refrained from strengthening the permanent fortifications in the Bataan/Corregidor area. Work did recommence in early 1941 but it was another case of too little, too late. A more cynical view of American tardiness would suggest that many of the shortcomings facing the US Combined Chiefs on the outbreak of war were the responsibility of a parsimonious congress rather than attributable to rigid adherence to the Naval Treaty.

The surface naval forces available to MacArthur were woefully inadequate to contest any Japanese amphibious operation. However, the twenty-two modern fleet submarines based at Cavite (the principal US naval base in the Philippines just to the south of Manila) were expected to play havoc with enemy lines of communication... and perhaps they would have, were it not for the functionally useless magnetic torpedoes with which they were equipped.
To the south, and centrally located between the American and British forces, were the Netherlands East Indies. With both the government and Royal Family in exile in London, the Dutch forces were grimly determined to do what they could to protect their prized possession.
The Japanese invasion forces for the conquest of Malaya embarked on December 4th at Samah Bay on the island of Hainan. They were detected a day later by Allied reconnaissance and while it was hoped that their destination might be Thailand, the more pragmatic observers realized that war was imminent.

American, British and Dutch authorities were well aware of the situation and the expected attack.
The naval and amphibious forces available to Japan were substantial and well trained. They were not overwhelming. That they were able to destroy every enemy element'sent to oppose them at a trifling cost in just three months makes this campaign the most incredible and baffling of the war.
The area in question is huge; some 5 million square miles. At no time until the fall of Singapore did the Japanese ground forces outnumber their Allied opponents, nor were they well supplied with artillery or other heavy weapons.
It was the combination of resolute naval and air support together with aggressive and determined leadership which best exemplified the major elements behind the Japanese successes.
It is harder to assess the reasons for the Allied failure.
The United States had not fought a serious naval war since the turn of the century, nor had any capital ship in the fleet fired a shot in anger. Only a tiny proportion of US servicemen had had any experience of war. And most importantly, the evidence of the last century would suggest that resolute decision making does not seem to be encouraged in peace-time democratic armies.
There are no such excuses for the abysmal performance of the British forces. Two years of desperate warfare, including a great many naval actions, should have been more than enough preparation for the trials to come. A combination of timorous leadership, dispirited troops, inadequate and undirected support together with a totally unwarranted contempt for a supposedly inferior Asiatic foe seem to be the main ingredients in the fiasco.
How ambitious, even unrealistic, would have been the Japanese plans in the face of determined and vigorous Allied resistance?

THE SCENARIOS

Before beginning any of the scenarios, please read these remarks.
The ground scale used in these scenarios is 30 nautical miles to the hex rather than the usual 20 nautical miles. Aircraft cruising speed, ship maximum speed, radar range and task group endurance are the only variables which have to be altered to reflect the change in
scale. In fact, providing these four variables are properly accounted for, the game system can handle a ground scale anywhere from $15-50 \mathrm{~nm}$ per hex without getting out of hand.
If the task of entering the data for these scenarios appears too daunting, there is an alternative. Read the editorial to this issue for the details of our scenario disk offer. We've had too many requests for this service to ignore the demand.
For those who like typing or keeping their money in the pocket (like me), there are some helpful suggestions in the Notes section to minimize the time and effort necessary to get the scenarios up and running.

SCENARIO 9A Japan Sweeps South

Japanese first phase invasions have been planned for Singora, Patani and Kota Bharu on the Malayan Peninsula and for Aparri, Vigan and Legaspi in the Philippines. The invasion fleets are already en route to their targets as the scenario begins at 2300 hours on Dec 7, 1941. (For comparison, the time on the Hawaiian Islands is 0400 hours, Dec 7.)
The operations against Malaya are quite separate from those against the Philippines. Each task force has to rely on separate air cover. With Allied unpreparedness in effect, sufficient damage can be done with the initial strikes that neither objective can mount an effective counter-attack.
The Allied situation is pretty well hopeless. The best that can be expected is the possibility of inflicting some damage on Japanese capital ships with the Prince of Wales and Repulse (which become available on the morning of the ninth).

Variations

1. Assume the Allied forces are unsurprised. Type (N) on the <SURPRISED> line of Menu 9.
2. Assume the British had sent some proper fighters to Singapore in time to be of some use. Add 3 squadrons of Hurricanes (Plane Type 9), each 16 aircraft, 7 fatigue, 2 training, 1 admin to the British OB. Deploy 2 squadrons in Singapore and 1 in Alor Setar. Menus 15 through 17 will need to be edited.
3. Task Group 3 in the Allied $O B$ is an optional reinforcement as evidenced by the fact it is scheduled to appear on day

9 (well after the scenario has ended). Locate this task group using Menu 8 and alter the <REINFORCE> line to 0. Furthermore, locate Allied task groups 1 and 2 and alter the <REINFORCE> line for each to 0 . This will create a powerful force and offers the British player a real chance to inflict some serious damage on the Japanese armada.
Finally, by combining all three variations, it is possible to cause a real set-back to Japanese plans.

SCENARIO 9B Closing the Ring

Japanese amphibious forces have been split into two groups. A central invasion force, despatched from Tarakan, is sailing through the Makassar Strait en route to Balikpapan in Dutch Borneo while an eastern invasion force is preparing to depart Menado at the northern tip of the Celebes for the capture of Kendari, an important settlement at the southern end of the same island boasting the best airfield in the region outside of Java.
Carrier Division 2, comprising Soryu and Hiryu, form the spearhead of ViceAdmiral Kondo's cover force. These air groups are the best protection available for the vulnerable transports.
There is some land-based air on forward airbases but the generally poor condition of most strips is going to result in a high attrition rate.
Finally, there are substantial JAAF and JNAF aircraft operating from captured airfields in Malaya. Their principal job is the reduction of the remnants of British air strength still operating from the beleagured island of Singapore.
For the Allies, it's another impending disaster. There are convoys of reinforcements en route to Singapore which must be protected, sorties to be mounted againt the invasion flotillas and air defense provided both for Singapore and Java. The British air forces have been somewhat stiffened by the arrival of some Hurricane fighters but the loss of almost all the American air forces have more than countered this gain.

Variations

1. Assume that the Japanese Navy's Car Div 2 had got into some difficulties in the Wake Island operation. This variation is especially appropriate for those readers who have managed to damage these ships in last issue's scenario. Enter

Menu 8 and alter the <REINFORCE> line for Japanese Task Group 4 to 9 . This will ensure it doesn't arrive during the course of the scenario.
2. The British have three optional task groups available; TG's 1,2 and 5. Enter Menu 8 and alter the <REINFORCE> line of each from 9 to 0 . These forces appear in the Indian Ocean to the south of Sumatra.

SCENARIO 9C The Last Bastion

By the end of February, 1942, Java was the last bastion of effective Allied resistance in South East Asia except for a dwindling force of American soldiers, abandoned by their commander, still holding out on the Bataan peninsula in the Philippines.
The Japanese plan to conquer the island involved simultaneous landings at the eastern and western ends combined with a ferocious air assault from both land based and carrier based aircraft. The western invasion force has sortied from Camranh Bay in French Indo-China and begins the scenario in the South China Sea some 200 nautical miles east of Singapore. The eastern arm of the pincer is scheduled to depart Balikpapan on the morning of the 27th.
Supporting the invasion is a heavy carrier strike group made up of Kaga, Akagi, Soryu and Hiryu together with almost a dozen capital ships.
The writing is on the wall for the Allied player. There is nowhere to run. The only option left to the Allied player is to do his duty.

Variations

1. American air reinforcements, arriving in Australia, were too late to affect the outcome of this campaign. We can assume they arrived a little earlier. Add 3 squadrons of P-40E warhawks (each 16 aircraft, 7 fatigue, 1 experience and 1 admin), 2 squadrons of Hud3As (each 12 aircraft, 7 fat, 1 exp, 1 admin) and 1 squadron of B-17Cs (16 aircraft, 7 fat, 1 exp, 1 admin) to any airbases on Java.
2. Again the Allied player can make use of an optional task force, this time comprising 4 task groups. Schedule TG's $1-4$ to arrive on day 0 instead of day 9. This force, provided it steers clear of the Japanese carriers, can make some splendid problems for the enemy transports.

EXTENDED VARIATIONS

In addition to the scenarios provided here, there is plenty of opportunity to experiment further with this campaign, both in terms of combining them in the sense that losses from previous scenarios are unavailable in subsequent ones and introducing additional forces to the affray.
The other important campaign which can be covered using this map of Greater South East Asia is the Philippines invasion of late 1944.
In a future issue we'll explore these possibilities further.

NOTES ON THE DATA

1. Prohibited Ocean Hexes. Due to the convoluted shape of some islands, there are a number of ocean hexes which must be designated as prohibited (i.e. terrain type T1 as explained in the map creation section in the Design Handbook). Rather than try to identify these hexes on the map, which could get a bit confusing given the profusion of small islands, channels and shoals, a list of the no-go hexes appears below.
Mainland China-22,30 24,32 45,5
Sumatra-13,46, 19,51 19,52
Java - 24,65 40,68
The Philippines - 62,18 62,19 63,19 63,21 67,31 68,31 65,35 66,35 67,35
Borneo - 38,48 52,38 54,39 53,44 45,58 38,59 34,54
Celebes - 59,58 60,58 61,58 66,49 65,49 65,50 62,54 78,45 79,46 78,48
2. Creating the Weather. Menu 14 (the weather forecast) is the same for all scenarios. To generate the location of the initial weather elements, enter Menu 13 and type (RET) a couple of times to get an interesting pattern: Save this creation as the weather pattern for the scenario. Note that this is the same procedure as recommended in the Wake Island scenario.
3. Entering the Data. Create all of scenario 9a except for the weather pattern. In those routines with separate entries for each scenario, be careful to enter only those values assigned to scenario 9a. Save the result of this labour in three locations as 9a, 9b and $9 c$. Complete the weather pattern for 9a and you're ready to play that scenario. To create scenario 9b, edit those routines which have different data from $9 a$ and
save the result in the $9 b$ location. Complete scenario 9c the same way.
4. Clearing Map Points. This is another reminder that you must type (Y) on the <CLEAR MAP POINTS> line. Otherwise, every coastwatcher and anchor point will end up in hex location 0,0 . This applies even if a side has no coastwatchers or anchor points at all.

CHRONOLOGY OF EVENTS

Dec ${ }^{8}$ as Us alf forces in the Philip. pines decimated Invasion of Malaya
Dec. 9/5 Thailand surfenders
Dec. 10 Aparl captuled (Phil) Prince of Wales and Repulse sunk
Dec. 12 Legaspi captured (Phil.)
Dee. 16 Milicaptured (British Borneo)
Dec 19 British Borneo surrenders
Dec 20". Davao captured (Phil.).
Dec 22 I Japaness Main Force lands at LIngayen Gult (Phil)
Jan 22.5 Manila captured (Phil)
Jan 10 ABDA Command established
Jan IIIAJapan declares war on Holland Menado captured (Celebes)
Jan 12:I arakan captured (Dut: Bor).
Jan 23 Balikpapan captured (\#)
Jan 2^{4} a. Kendarl captured (Celebes) USN destroyers raid Japan: ese transports at Balikpapan
Jan 30 Ambon Is, captured
Feb 4 A Battle of Makassar Strail
Feb 15 Singapore sulienders Palembang captured (Sum.)
Feb. 16 . Banjarmasin captured (Dut. Borneo)
Febl 19 . Ball captured Timol captured Darwin struck by Nagumo's Carlie Force
Feb 20 A Battle of Badung Strait
Mar 1/ASBattle ot the Java Sea.
Mar ${ }^{8}$ /. Netherlands East Indies surrenders Rangoon captured (Burma)
Mar 28 Japanese occupy remainder of Sumatra.
May 6 as. All Us iorces in the Philippines surrendel

JAPAN SWEEPS SOUTH - Other Ships

SHIP NUM. (9a)	1-215	,	-	*	.	1.	2	*	-	*	-	.	3	4	5
SHIP NUM. (9b)	1-215	*	1	$\stackrel{\circ}{\circ}$	-	*	-	2	3	4	5	-	6	7	8
SHIP NUM (9c)	1.215	1	2	3	4	- ${ }^{\text {a }}$	-	5.	6	1.	8	9.	10	11.	12
PENNANT NUMBER	[5]	BB 05	BB 06	BB 07	BB 09	BB. 53.	BC 34	CA 56.	CAI33	CA 40	CA 68	CL. 59	CL144	CLI46	CL199
SHIP CLASS	1.63	-1.14	. $14 / 4$	1-14	-1.14	214.	3/.1.	-1515.	-16/6	-1717	. 1818	1.19	4/9/10	4/9110	4/9/10
DAMAGE STATUS	0.15	15	15	15.	15	15.	15	15	15.	15	15	15.	15/15/13	15/15/12	15
CARGO	0.15	0	0	$0 \times$	0	0	0	0	0	0	0	0.	0	, 0.	0
RADAR	0.7	1	1	1.	1	2	2	1.	0	1.	1	0	0	0	0
DAMAGE CONTROL	0.3	2	2	2	2	2	2	2	2	2	2	2	2	2	2
AAACCURACY	0.3	, 1,	1	1	1	2	2	2	1	2	2	2	2	2.	2
TASK GROUP	1-23	141	-11/1	4.11	.1.11	11.1.	1/1/.	4212	-12/2	1212	-13/8	-1412	2/4/3	2/3/5	2/4/5
ASS. SUB PATROL	(x, y)	,	-	\% $\%$ \%	-	, \%	-	"***	-		.	*	-	-	-
SUB DEPTH	0.7	*	-	\cdots	-	$\stackrel{ }{ }$	-	\% $\%$ \%	-	-			.		
SUB SPEED	0.7	*	-	, *	-	, 3 \% 4 ,	-	, ${ }^{2}$	-	-	-	-			-
SEAPLANE SQN	[1]	\checkmark	.	,	.	211.1\%	22/-1.	+1/11	-	1212	./3/3	-	-		
SHIP NUM. (9a)	1-215	,	.	\checkmark	-	\checkmark	-	*	-	6.	7	8.	.	9	.
SHIP NUM. (9b)	$1-215$		\square	9	-	10	11	12	-	13.	-	*	14	15	16
SHIP NUM (9c)	1-215	13.	14	15	16	17.	18	19	20	21	-	\% \%	22	23.	24
PENNANT NUMBER	[5]	CL 88	CL 89	CL 52.	CL 66	CL 75	CL 70	CLI29:	CL 21	CL 80	AMC 1	AMC 2	DDD31	DDD68	DDD69
SHIP CLASS	1-63	1411	-1.111	-110112	-1.112	4111/13	-.112/14	413115	-1-116	5/14/17.	61.1.	6\% 4 -	. 115118	7.151518	-115/18
DAMAGE STATUS	0.15	15	15	15.	15	15.	15	15	15	15.	15	15.	15	15115/12	15
CARGO	$0-15$	0	0	O\%	0	0	0	\% 0	0	0	6	7	0	0	0
RADAR	0.7	0	0	0	0	0.	0	0	2	1.	0	,	0	0	0
DAMAGE CONTROL	0.3	2	2	2	2	2.	2	2	2	2.	1	1.	2	2	2
AA ACCURACY	0.3	2	2	2	2	$2 . \times 1$	2	2.	2	2.	0	0	2	2	2
TASK GROUP	1-23	1213	.1.16	$11 / 17$.1.13	-1214	. $12 / 3$	-12/8	-1.13	31514	4/-1-	51%	-13/5	1/1/2	. $13 / 5$
ASS. SUB PATROL	(x, y)	-	-	\%*	-	,	-	, \%	-	,	-	- 4			
SUB DEPTH	$0-7$	+ $*$	-	\cdots	$-$	*	-	. 4.	-	*	.	,	-	,	
SUB SPEED	0.7	, \times	-	\checkmark	\square	*	.	, $\times 1$	-	, $\%$ \%	-	\%	-	-	-
SEAPLANE SON	[1]	\%	-	*	-	-	-	14/4	-1.15	2015/6	.	-	-	.	-
SHIP NUM. (9a)	1-215	,	-	10	11	12	.	4	13	.	-	14	-	-	-
SHIP NUM. (9b)	1-215	17.	18	19	20	21	22	23.	24	$\stackrel{+}{4}$	25	26.	-	-	-
SHIP NUM (9c)	1.215	25.	26	27.	28	29.	30	31.	32	33	34	35	36	37.	38
PENNANT NUMBER	[5]	DOH42:	DDH75	DDH10	DDH27	DDH61	DDH69	DDH70.	DDD87	DDH01.	DDH31	DDF85.	DDG02	DDG49	DDG97
SHIP CLASS	1.63	-116/19	-117120	8118121.	8/18/21	8/18/21.	-118/21	-118121.	9/19/22	1.122	. $119 / 22$	10/20/23	3.-1-123	-1.123	-1-123
DAMAGE STATUS	0.15	15.	15	15415713.	15	15.	15	15.	15	15.	15	15.	15	15%	15
CAPGO	0-15	0	0	\% $0 \times$	0	0.	0	0.	0	0	0	0	0	0	0
RADAR	0.7	0	0	0.	0	0.	0	0	0	0	0	0	0	0	0
DAMAGE CONTROL	0.3	2	2	2	2	2	2	2	2	2	2	2	2	2	2
AA ACCURACY	0.3	2	2	2	2	2	2	2	2	2.	2	2	2	2	2
TASK GROUP	1-23	1311	-13/1	3/3/3	1/2/2	$1 / 212$. $14 / 1$	-15/1	3/3/2	$1 / 13$	-15/2	31/4/3	.1.13	T/12	-1/13
ASS. SUB PATROL	(x, y)	\%	-	***	-	\% 2	-	* ${ }^{\text {a }}$	-	*	,	*	-	- ${ }^{\text {a }}$	-
SUB DEPTH	0.7	*	\cdot	.	-	-	.	*	-	.	.	*	-	-	-
SUB SPEED	0.7	*	-	*	-	\cdots	-	*	-	\cdots	-	*	-		-
SEAPLANE SON	[1]	*	.	- + .	-	*	-	-	-		-	\cdots	-	\checkmark	-
SHIP NUM. (9a)	1.215	-	-	15	16	17	-	18	19	20	21	22	23	24	25
SHIP NUM. (9b)	1.215	\wedge	-	27	28	29	30	31	32	33.	34	$\stackrel{ }{2}$	35	36.	.
SHIP NUM (9c)	1-215	39.	40	41	-	42	-	44	45	\cdots	-	46	47	\cdots	48
PENNANT NUMBER	[5]	DDG4 1	DDG69	DEH04	DEH29	DEH51.	SSN62	CA 30	CL 12	CL 47	DD211	D. 213	DD216	DD217	DD218
SHIP CLASS	1-63	-1.124	-1.124	11/21/25	11/21/.	11121/25	-1221.	12/23/26:	13/24/27	14/251.	15.1261-	151.128	15/26/28	1512614	15/.128
DAMAGE STATUS	0.15	15.	15	15	15	15.	15	15/15/12	15	15	15	15.	15/15/12	15.	15
CAPGO	0.15	0	0	$0 \times$	0	0	0	.	0	0	0	0	0	0	0
RADAR	0.7	0	0	0	0	0.	0	0	0	0	0	.	0	0	0
DAMAGE CONTROL	0.3	2	2	2	2	2.	1	1	1	1	1	1	1	1	1
AA ACCURACY	0-3	2	2	2	2	2	2	1	1	1.	1	1	1	1	1
TASK GROUP	1.23	14.4	-1.14	$1111 / 3$	2/2/.	21212	-	61618	7/7/10	666%	818\%	71.110	81818	8181%	8/-18
ASS. SUB PATROL	(x, y)	-	-	, \% 0 ,	-	\%	30,49	*		\%	-	,		,	-
SUB DEPTH	0.7	.	.	-	-	*	6	*	-	.	.	-	-	\%	\because
SUB SPEED	0.7	\checkmark	.	*	\cdot	.	4	\cdots	.	.	.	-	-	-	-
SEAPLANE SAN	[1]	*	-	4	\square	-	-	-	.	*	-	-	-	-	-
SHIP NUM. (9a)	1.215	26.	27	28, \%	29	30	31	32	33	34	35	36.	37	*	38
SHIP NUM. (9b)	1.215	\%	37	38.3		39	40	41	42	4	-	\%		43	-
SHIP NUM (9c)	1.215	\% \times,	49	50	51	\cdots	52	53.	54	\% $\%$	-	\cdots			\cdots
PENNANTNUMBER	[5]	DD219*	DD222	DD224.	DD225	DD226.	DD227	DD228.	DD230	S.36	S-37	S.38	S-39	S.41.	SS175
SHIP CLASS	1.63	151.1\%:	15/26/28	15/26/28	15/.128	151261\%	15/26/28	3.15126128	15/26/28	16\% 61	161.1.	16\%\%	161.1.	.127\%	17\% 1.
DAMAGE STATUS	0.15	15.	15	15.	15	15	15	15	15	15	15	15	15	15	15
capgo	0.15	0	0	0	0	0	0	0.	0	0	0	0.	0	0	0
RADAA	0.7	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DAMAGE CONTROL	0.3	1	1	1	1	1	1	1	1	1	1	1	1	1	1
AA ACCURACY	0.3	1.	1	1.	1	1	1	1	1	1.	1	1.	1	1.	1
TASK GROUP	1.23	8\%.1.	7/8/10	7/1818	6/18	617\%.	61718	61718	71718	¢	-	,	-	3	-
ASS. SUB PATROL	(x, y)	,	-	,	-	\%	-	* ${ }^{*}$	-	57,16:	59,22	62,23	57,20	58,41	60,9
SUB DEPTH	0.7	4	-	\% *	\square	*	\bullet	\checkmark	-	2	2	2	2	2	4
SUB SPEED	0.7	-	-	\%	-	*	-	,	-	6.	6	6.	6	6.	3
SEAPLANE SON	[1]	*	-	, \%	.	-	-	\checkmark	.	*	-	-	-	4	-
SHIP NUM. (9a)	1.215	*	.	, \%	39	40	-	41.	\cdot	4	-	\checkmark	\cdot	42	43
SHIP NUM. (9b)	1.215	44	\cdots	45	-	**	-	\%	46	47.	\cdot	-	-	48.	49
SHIP NUM (9c)	1-215	\cdots	55	\% +1	-	- -1.	56	+ $*+$	\square	\cdots	57	58.	59	60	61
PENNANT NUMBER.	[5]	SS176.	SS178	SS182	SS183	SS186:	SS188	SS189.	SS190	S5192.	SS194	SS196	SS197	CL1 1	CL2
SHIP CLASS	1.63	128\%	-1-129	+1291\%	181.1.	181/1.	.1.130	191\%.	. 1301.	1301.	-1-130	-1430	-1.130	20/31/31	21/32/32
DAMAGE STATUS	0.15	15.	15	15.	15	15.	15	15	15	15.	15	15.	15	15.	15/12/12
CAAGO	0.15	0	0	0	0	0	0	0.	0	0.	0	0.	0	0.	0
RADAP	0.7	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DAMAGE CONTROL	0.3	1	1	1	1	1	1	1	1	1	1	1	1	2	2
AA ACCURACY	0.3	1	1	1	1	1.	1	1	1	1	1	1	1	1.	1
TASK GROUP	1.23	+ +1	\cdots			-	-	\cdots	-	\bigcirc	\cdots	< $\times 1$	\%	131618	13/6/8
ASS. SUB PATROL	(x, y)	60,47	48,64	72,37	65,11	69,19	27,59	58,13	56,45	53,36.	46,66	32,55	56,50	,	-
SUB DEPTH	0.7	4.	4	4.	4	4	5	5.	5	5.	5	5.	5	*	-
SUB SPEED	0.7	3.	3	4.	4	4.	4	4	4	4	4	4	4	*	-
SEAPLANE SON	[1]	$\stackrel{\square}{*}$	\cdots		-	, \% \%	\cdots	, \% \%	\cdots	, \%	\%	, \%	\cdots,	, \% \% \times,	\cdots

JSS - Other Ships (cont.)

SHIP NUM. (9a) 1	1.215	4.4	45	46.	47	48.	49	50.	51	$*$	-	,	52	*	-
SHIP NUM. (9b)	1-215	50	51	52	53	54	55	56.	57	58	-	59.	-	-	.
SHIP NUM (9c)	1-215	62	63	*	64	$\%$	65	\%	66	\%	67	$\%$,	-	68.	69
PENNANTNUMBER	[5]	CL3	DD 1	DD 2	DD3	DD 4	DD 5	DD 6	DD 7	K. 11	K-12	K-13	K-14	K.15	K.16
SHIP CLASS	1-63	2:2:33133	23/34/34	23/341/,	23/34/34	231341.	24/35/35	24/3.5\%	24/35/35	136\%	-1.136	136/4.	25/.1.	1/137	-1-137
DAMAGESTATUS	0.15	15	15	15	15	, 15	15/15/13	15.	15	15	15	15.	15	15.	15
CARGO	0.15	0	0	0.	0	0	0	\% 0	0	0	0	0	0	-	0
RADAR	0.7	0	0	0	0	0	0	0	,	0	0	0	0	0	0
DAMAGE CONTIROL	0.3	2	2	2	2	2	2	2	2	2	2	2	2	2	2
AAACCURACY	0.3	1	1	4, 1	1	4, ${ }^{1}$	1	1 1	1	1.	1	1	1	1	1
TASK GROUP	1-23	141018.	14/9/8	1319\%	14/9/8	13/7\%.	13/7/8	131918	$13 / 9 / 8$	\checkmark	-	$\stackrel{ }{*}$	-	-	-
ASS. SUB PATROL	(x, y)	\%	\cdots	,	-	, ${ }^{\text {a }}$,	-	\%	-	23,52	47,60	52,54.	32,56	21,50	26,59
SUB DEPTH	0.7	*	-	\cdots	* -	-	-	-	-	2	2	2	3	3.	3
SUB SPEED	0.7	*	-	\%	$\stackrel{1}{4}$	* * \%	-	\%*-	-	.	3	3.	4	4	4
SEAPLANE SON	[1]	\checkmark	-	\cdots	-	*	-	*	.	*	-	,	-	,	-
SHIP NUM. (9a)	1.215	$\stackrel{ }{ }$	\cdot	53	\%	54	-	*	55	56	57	58	59	60.	61
SHIP NUM. (9b)	1-215	60	61	,	$-$	*	\square		62	63	64	65.	66	\%	-
SHIP NUM (9c)	1.215	\%	\cdots		70	\%	71	72	73	74.	-	\bigcirc	-	\checkmark	-
PENNANT NUMBER	[5]	K 17.	K-18	0×16	0-17	0.18	0.19	0-20	TR 1	Th 2	TR 3	TH.4	TR 5	TH 6.	TR 7
SHIP CLASS	1.63	1371\%,	-1371-	26\% 1	- -1.138	$261 / 1 \%$	-1.138	$1+38$.	27/38/39	27/38/39	27/38/-	27138\%	27/38/.	271\%1:	271.1.
DAMAGE STATUS	0.15	15.	15	15.	15	15.	15	15.	15	15.	15	15.	15	15	15
CARGO	0-15	0	0	0.	0	0	0	0	3	.	3	3.	3	3	3
RADAR	0.7	0.	0	0	0	0	0	0	0	0,	0	0.	0	0	0
DAMAGE CONTTROL	0.3	2	2	2	2	2	2	2	0	$0.1 \times$	0	0.	,	0	0
AA ACCURACY	0.3	1	1	1	1	1	1	1.	0	0	0	0	0	0.	0
TASK GROUP	1-23	¢ 4	-	\%	-	\%	-	, \%	4/3/6	4/4/7	5/4/-	9/10/	10/10\%	$111 / 4$	11/.1.
ASS. SUB PATROL	(x, y)	63,62	68,54	51,58	46,66	56,44	73,62	26,59	-		-	\cdots	-	- - -	-
SUB DEPTH	0.7	3.	3	5.	5	5.	5	5.	-	\%	-	,	-	.	-
SUB SPEED	0.7	4	4	4	4	4	4	4	-	*.	-	\%	-	-	-
SEAPLANE SON	[1]	,	-	*	-	*	-	*	-	-	-	\cdots	-	.	.
SHIP NUM. (9a)	1.215	62	63	64	65	*	*	\bullet	66	67.	-	-	68	69.	70
SHIP NUM. (9b)	1.215	\%	67	68.	69	70	71	72	73	74	75	76	77	78	
SHIP NUM (9c)	1.215	\checkmark	75	76.	77	$\cdots \times$	-	\cdots	78	\cdots		-	79	80	
PENNANT NUMBER	[5]	TR 8	TR 9	TR 10	TR 11	TR 12	TR 13	TR 14	TR 15	TR 16	TR 17	TR 18	BC 1	BC.4	CA 5
SHIP CLASS	1.63	271.4.	28/39/40	28139740	28/39/40	1391.	-139/.	1/391.	29/40/41	291401/	. 1401.	44.01.	33/47/47	33/47/47	341.1.
DAMAGE STATUS	0.15	15	15	15.	15	15.	15	15.	15	15.	15	15.	15	15.	15
cargo	0.15	3	6	6.	6	6.	6	6.	10	10	10	10	0	0.	0
RADAR	0.7	0	.0	0	0	0	0	0	0	0	0	0	0	0	0
DAMAGE CONTROL	0.3	0	0	0	0	0	0	0	0	0	0	0.	2	2	2
AA ACCURACY	0.3	${ }^{\circ}$	0	0.	0	0.	0	0.	0	0	0	0.	1	1	1
TASK GROUP	1-23	$151 / 14$	5/3/6	513\%6	10/3/7	13\%\%	. 141.	-141\%.	4/3/9	12\%3/.	./4/.	141.	10/6/3	1016/3	41.1.
ASS. SUB PATROL	(x, y)	N 1.	\% -	***	-	\% $2 \times$	*	\%	.	*	-	**	-	***	-
SUB DEPTH	0.7	, 相	-	*	-	$\stackrel{\sim}{4}$	-	\%.	-	-	.	-	.	**	-
SUB SPEED	0.7	\checkmark	-	\cdots	\square	*	-	*	\square	-	-	-	-	\cdots	\square
SEAPLANE SON	[1]	1. \times,	-	.	-	-	-	-	-	.	-	, \%.	$84 / 84 / 84$	85/85/85:	861.1.
SHIP NUM. (9a)	1-215	71	72	73.	74	75	-	76	77	78	79	80	-	*	-
SHIP NUM. (9b)	1-215	79	-	80	81	82	83	84.	85	86	87	88.	-	*	-
SHIP NUM (9c)	1.215	81	-	82	83	\bigcirc	84	85.	86	87.	88	89.	90	91.	92
PENNANT NUMBER	151	CA 6	CA 7	CA 8.	CA 9	CA 10	CA 11	CA 12	CA 13	CA 14	CA 15	CA 16	CA 17	CA: 18	CL 8
SHIP CLASS	1-63	34148148:	: 341.1	34148148	8:35/49/49	35/49/\%	.149/49	35/49/49	36/50/50	36/50/50	$36 / 50150$	$36150 / 50$	-1.151	-1/51	38/52/52
DAMAGE STATUS	0.15	15	15	15	15	15.	15	15.	15	15.	15	15.	15	15.	15
cargo	$0-15$	0	0	0	0	0	0	0	0	0	0	0	0	0	0
RADAR	0.7	0	0	0	0	0	0	0	0	\bigcirc	0	0	0	0	0
DAMAGE CONTROL	0.3	2	2	2	2	2	2	2	2	2	2	2	2	2	2
AA ACCURACY	0.3	1	1	1	1	1	1	1.	1	1.	1	1.	1	1	1
TASK GROUP	1-23	5/2/6	5/.1.	512\%6	10/6/3	10171\%	.14/3	10/6/3:	9/7/10	917110	9/7/10	917110	. 1.11	1/111	.1.12
ASS. SUB PATROL	(x, y)	\%	.	\cdots	-	,	-	,	-	**	-		-	\%	.
SUB DEPTH	0.7	\bigcirc	-	-	-	*	-	-	-	-	-	-	-	\%	\square
SUB SPEED	0.7	,	- -	, 01818	-	,	+ -	18	- ${ }^{-}$	¢ ¢	-	$\stackrel{ }{ }$	-	*	\cdot
SEAPLANE SON	[1]	87186186	881.1.	89/877187	790/88/88	91189/4.	./90.189	92191190:	93/92/91	94193192	95/94/93	96195194	-1.195	-1/196	-
SHIP NUM. (9a)	1-215	81.	82	$\stackrel{+}{+}$	84	85.	86	87.	88	89	90	91.	92	93	
SHIP NUM. (9b)	1-215	89	-	156	90	91	-	$\stackrel{1}{ }$	-	4	-	\cdots	-		92
SHIP NUM (9c)	$1-215$	-	93	161	94	95.	-	96.	97	98	99	100	101	102	103
PENNANTNUMBER	[5]	CL 11.	CL 12	CL 13	CL 15	CL16.	CL 17	DD 6.	DD 16	DD 17.	DD 23	DD 27.	DD 30	DD. 31	DD 35
SHIP CLASS	1.63	38152\%	381.152	152152.	39/53/53	391/53/53	3. $39 / .1$	401/*54.	41/.155	41/155	42/.156	421-156.	42/.156	$42 /$ / 56	.154/57
DAMAGE STATUS	0.15	15	15	15.	15	15.	15	15.	15	15	15	15.	15	15	15
CARGO	0.15	0	0	0	0	0	0	0	0	0	0	0.	0	0	0
RADAR	0.7	0	0	0	0	0.	0	0	0	0	0	0.	0	0	0
DAMAGE CONTROL	0.3	2.	2	2	2	2	2	2	2	2	2	2.	2	2	2
AA ACCUPACY	0-3	1.	1	1.	1	1.	1	1	1	1.	1	2	1	1.	1
TASK GROUP	1-23	3131.	1/1/5	2/818.	11/1/7	2/5/4	61.1	51.19	1/.15	11.15	1/.15	1/1.15.	1/.15	1/1/15	. $14 / 5$
ASS. SUB PATROL	(x, y)	,	-	, \%	-	*	-	\% 4	-	, ${ }^{4}$	-	,	-	\%	
SUB DEPTH	0.7	, \%	\square	\cdots	\square	-	-	*	-	,	-	*	-	-	-
SUB SPEED	0.7	1,	\cdot	1+2	-	\%	\cdot	\cdots	\%	*	-	\%	-	-	-
SEAPLANE SON	[1]	$1 \times$	-	-	-	\sim	-	\checkmark	.	\cdots	-
SHIP NUM. (9a)	1.215	94,	\% 95	9.6	97	98	99	100.	101	*	102	103.	104	1.05.	106
SHIP NUM. (9b)	1.215	-	\cdots -	93.	-	94	95	96	-	97.	98	,	99	100	-
SHIP NUM (9c)	1.215	104	105	- + ,	106	107.	-	108.	$\bigcirc \quad-$	110	-	4	111	112	-
PENNANT NUMBER	[5]	DD 36:	DD 37	D0 38,	DD 39	DD 40	DD 41	DD 43	DD 45	DD 46.	DD 47	DD 48	DD 49	DD 50	DD 51
SHIP CLASS	1-63	43/-157	43/.157	431.54\%	, 43/-157	43154157	7. $43154 /$ -	43/54/57	7. 431.1	$\underline{154157}$	431541.-	43\%1.	43/54/57	43/5.4157	431.1.
DAMAGE STATUS	0.15	15.	15	15.	15	15	15	15.	15	15.	15	15.	15	15.	15
CARGO	0.15	0	0	0	0	0	0	0	0	0	0	0.	0	0.	0
RADAR	0.7	0	0	0	0	0	0	0	0	0	0	0.	0	0	0
DAMMGE CONTROL	0.3	2.	2	2	2	2	2	2	2	2	2	2	2	2	2
AA ACCURACY	0.3	1.	1	1	1	1.	1	1.	1	1.	1	1.	1	1	1
TASK GROUP	1-23	71410	71.110	677/	91.18	918/8.	6/71.	81818	7/1.	-14/5.	6/81.	8/4.1\%	8/8/8	918/8.	61.1.
ASS, SUB PATROL	(x, y)	.	-	,	\cdots	W,	- .	O-	\bigcirc	, 4.	-	4	-	, 4	-
SUB DEPTH	0.7	*	-	\%	-	+	\cdots -	\% $*$	\cdots	\cdots	-	*	-	\%	-
SUB SPEED	0.7	,	-		\cdots	, \% \% \%	+	W,	\%	\%	-	*	-	\cdots	-
SEAPLANE SON	[1]		\bigcirc	, \% \% ${ }^{\text {a }}$	\cdots	, + -	-	\%.3.***	\cdots		+ -	, \% ${ }^{\text {a }}$	\cdots	\% 0	-

JSS - Other Ships (cont.)

SHIP NUM. (9a)	1-215		107			108	109		110	11 c	112	113		115.	116
SHIP NUM. (9b)	1.215	101.	-	102	103	104	105	106	107	108	-	109	110	111	112
SHIP NUM (9c)	1.215	113	114	11.5	116	117.		118.	119		120	121			122
PENNANT NUMBER	[5]	DD 52	DD 54	DD 55	DD 56	DD 57	DD 58	DD 59	D0 65	DD 66	DD 67	DD. 68	DD 71	DD 72	DD 73
SHIP CLASS	1.63	4/54157	43/1/57	* 15.5158	-155/58	44/55/58	44/551.	* 15.6159	45/57/60	45157\%	$451 / 160$	45/57/160	45/571.	45157\%	45/57/60
DAMAGE STATUS	0.15	15.	15	15.	15	15	15	15	15	15	15	15	15	13.	15
CARGO	0.15	,	0	0	0	0	0	0	0	0	0	0	0	0	0
RADAR	0.7	0	0	,	0	O	0	0	0	0	0	0	0	0	0
DAMAGE CONTROL	0.3	2	2	2	2	2	2	2	2	2	2	2.	2	2	2
AA ACCURACY	0.3	1.	1	1	1	1	1	1.	1	13	1	1	1	1.	1
TASK GROUP	1.23	W/475	71.110	1618	-16/8	4/21.	4/2/6	F412	2/5/4	3/31\%	2/-14	2/5/4	3/5/.	3/5\%	3/3/4
ASS. SUB PATROL	(x, y)	\%	-	,	\cdots	${ }_{\text {a }}$	-		-		-	\%	-	/	.
SUB DEPTH	0.7	*	.		-	*			.						
SUB SPEED	0.7	-	.	*	.	.	.	*	.	\%	.	.		.	
SEAPLANE SON	[11]	,	-		-	.	-	*	.	.	.	*	.	.	.
SHIP NUM. (9a)	1.215	117	118		119	120	121		.	*	122	123	.	124	125
SHIP NUM. (9b)	1.215	113	114		115	116	117	118	119		120	121		122	123
SHIP NUM (9c)	$1-215$	123	124	125	125	127	128	129	130	131	132	133	134	135	
PENNANT NUMBER	[5]	D0 74	DD 77	DD 79	DD 81	DD 82	DD 85	D0. 86	DD 87	DD 88	D0 89	DD 90	DD 91	DD 93	DD 95
SHIP CLASS	1.63	45157/60	46/58/61.	\%/161.	46/58/61	1:46/58/61	47/59/62	. 159762	-159/62	4.162	47/59/62	47159162	-1.162	47/19/62	47/591.
damage status	0.15	15	15	15	15	15	15	15.	15	15	15	15.	15	15	15
capgo	0.15	0.	0	0	0	.	0	,	0	.	0	0	0	0	0
RADAR	0.7	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DAMAGE CONTROL	0.3	2.	2	2		2	2	2	2	2	2	2	2	2	2
AA ACCURACY	0.3		1	1.	1	1.	,	11.	1	1	1	$1{ }^{1}$	1		1
TASK GROUP	1-23	21514	2/9/4	\% $1 / 12$	2/5/4	21514	11/1/7	26/3	./6/3	1.22	11/1/7	111117.	-1.12	111117	11/1/.
ASS SUB PATROL	(x, y)														
SUB DEPTH	0.7	.	-	.	.	\%	-	.	.	,
SUB SPEED	0.7		.	.	.	\%	.	*
SEAPLANE SON	[1]	,	.	.	.	*	-	.	-	.	-	.			.
SHIP NUM. (9a)	1.215	,	126	.	.	127	.	128	129	130	131	132	133	134	135
SHIP NUM. (9b)	1.215	124	125			126	-	127.	128	129	130	131	132	133	134
SHIP NUM (9C)	1.215	136	137	138	139	140	141	142							
PENNANT NUMBEE	[5]	DD 96	DD 97	DD 98.	DD 99	D0100	DD101	D0102	1.165	171.66	1.167	TR 1.	TR2	TR3	TR 4
SHIP CLASS	1.63	*/59162.	\%47159/62	1/162	${ }_{-1 / 162}$	47/159/62	-1-162	47159162	2.481601-	481601\%	48/60\%.	49/611.	49/61/.	49/61/4.	49/61/.
DAMAGESTATUS	0.15	15.	15	315	15	15.	15	15	15	15	15	15	15	15.	15
cabso	0.15	0	0	0	0	0	0	0.	0	0	0	2	2	2	2
RADAR	0.7	0	0	0	0	0	0	0	0	0	0	0	0	0	0
DAMAGE CONTROL	0.3	2	2	2	2	2.	2	2	1	1	1	0	0	0	0
AA ACCURACY	0.3	1.	1	1	1	1	1	1	1	1	1	0	0	0	0
TASK GROUP	1.23.	\%/6/3	11/1/7	$1 / 12$	-1.12	$3 / 177$.1.12	311.17				1/11\%	1/1/.	1111.	2/1/.
ASS. SUB PATROL	(x, y)				-		-	:	22,44	21,64	58,23	,	-		
SUB DEPTH	0.7	.	-	*	.	*	.	*	3	3	3	.	.	:	.
SUB SPEED	0.7	-	.	,	.	*	.	*	3	3	3	*	.	*	
SEAPLANE SON	[1]	,	.	*	.	*	.	*	-	,	-
SHIP NUM. (9a)	1-215	136	137	138	139	140	141	142	143	144	145	146	147	148	149
SHIP NUM. (9b)	1-215	135	136	137	138	139	140	141	142	143	144	145.	146	,	-
SHIP NUM (9c)	1.215														
PENNANT NUMBEA	[5]	TR 5.	TR 6	TR 7	TR 8	TR 9.	TR 10	TR 11	TR 12	TA 13	TR 14	TR 15.	TR 16	TR 17	TR 18
SHIP CLASS	1.63	49/61\%:	49/61/.	491611\%	49/61.	4916114	49/61/.	49/61/	49/61/.	49161/.	49/61/-	49/61/4	49/61/.	4914.9	491.1.
damage status	0.15	15	15	15	15	15	15	15.	15	15	15	15	15	15	15
CABGO	0.15	2	2	\%		2	2	.	2	.	2	2	2	,	2
RADAR	0.7	0	0	0.	0	0	0	0	0	0	0	0	0	0	0
DAMAGE CONTROL	0.3	0	0	0	0	0	0	0	0	0	0		0	0	
AAACCURACY	0.3	0	,	0	0	0	0	0	0	0	0	0	0	0	0
TASK GROUP	1.23	2 2\%	2/11.	3111.	3/5/.	315\%:	3/5/.	6/5\%	6/5/.	715\%	7/9/.	719\%.	719%	71/1.	71.1.
ASS. SUB PATROL	(x, y)			\%.		.	-	,		,	-	, .	-		-
SUB DEPTH	0.7	-	\bigcirc	,	.	*	.	*	-	,	-	*	-	*	
SUB SPEED	0.7	-	-	,	-	\cdots	.	$*$	-	*	-	*	\cdots	.	-
SEAPLANE SON	[1]	,	-	.	.		.				-		.		-
SHIP NUM. (9a)	1.215	150	151	152	153	154	155	156	157	158	159	160	161	162	163
SHIP NUM. (9b)	1.215	\%	.	,	-	147	148	149	150	151	152			153	154
SHIP NUM (9c)	1.215		-	,	-	,		,				,	-	145	146
PENNANT NUMBEE		TR 19	TR 20	TR 21	TR 22	TR 23	TR 24	TR 25	TR 26	TR 27	TR 28	TR 29.	TR 30		
SHIP CLASS	1-63	49\%1\%	49\%\%.	491.1.	491.1.	501621/3	50/621.	50\%62\%	50/62/.	501621.	50162/.	50\%\%.	501.1.	51763163	351/63/63
damage status	0.15				15		15				15	15	15		
capgo	0.15	2.	2	2	2	4	4	4	4	4	4	4	4	7	7
RADAR	0.7	0	0	.	0	0	0			.		0	0	0	0
DAMAGE CONTROL	0.3	0	0	0	0	0	0	0	0	,	0	.	.	0	0
AAACCURACY	0.3	,	O	?	0	0	a	0	0	0	,	0.	0	0.	0
TASK GROUP	1-23	81.1.4	8/1.	8\% \% 1.	8/.1.	1/11/	1/1/.	2/5\%	2/5/.	6/5\%.	7/5/.	71.1.	81.1.	11114	2/5/4
ASS. SUB PATROL	(x, y)		-		\cdots		-		-		.		-		
SUB DEPTH	0.7	.	-	\checkmark	-	*	\square	\%	.	\%	-	\%	\bigcirc	,	-
SUB SPEED	0.7	,	-	*	.	$\stackrel{ }{*}$.	\sim	-	.	-	\%	-	*	.
SEAPLANE SON	[1]					\checkmark	.	*	.	\checkmark	.		.		-
SHIP NUM. (9a)	1-215	164	165	166	167	168	169	*	.
SHIP NUM. (9b)	$1-215$	155							\cdot	\checkmark	-	4	-	,	
SHIP NUM (9c)	$1-215$	147	148	149	150	151	152	153	154	155	156	157	158	159	160
PENTANT NUMBEE	[5]	TR 33:	TR 34	TR 35	TR 36	TR 37	TR 38	TR 39.	TR 40	TR 41.	TR 42	TR 43.	TR 44	TR 45	TR 46
SHIP CLASS	1-63	51/63/63	51/.163	511/163	51/.163	51/1/63	51/.163	-1/163	-1.163	1/1763.	.1.163	1/183	-1.163	*/1763	.1.163
damage status	0.15	15.	15	15	15	15.	15	15	15	15.	15	15.	15	15.	15
CAPGO	0.15	7	7	7.	7	7.	7	7.	7	7	7	7.	7	7.	7
RADAR	0.7	0	0	0		0		0	0	0	0	0	0	0	,
DAMAGE CONTROL	0.3	0	a	,	0	0	O	0	0	0	0	0	0	0.	0
AA ACCURACY	0.3	- 0	0	.	0	,		,	0	,	0	0.	0	0	,
TASK GROUP	1.23	315/4	3/1/5	3/*/5.5.	71.15	71:15:	71.17	\%17	. 1.17	$1 / 177$	-1.18	1.18	-1.18	M.18.	.1.18
ASS, SUB PATROL	(x, y)	,			-	-	-	-	-	:	-	,	-		-
SUB DEPTH	0.7	-					-		.		-		.	*	
SUB SPEED	0.7	-	.				-	\checkmark	-	,	.	*	.	*	.
SEAPLANE SON	[1]										-		\cdot		

JAPAN SWEEPS SOUTH - Allied Task Groups

TASK GROUP NUM.	1.23	1 (9a)	2 (9a)	3. (9a)	4 (9a)	5 (9a)	6 (9a)	7 (9a)	8 (9a)	9.(9a)	10 (9a)	11. 9 (9)
FLAGSHIP	[-]	BB 53	CL146	Indomitable	AMC 1	AMC 2.	CA 30	CL12.	DD218	TR 4.	TR 5	TR.6:
TOTAL SHIPS	[-1	6.	5	5	4	4.	6	5.	5	\% 1 , ${ }^{1}$	2	2
OBJECTIVE	1.23	0	0	0	1	1.	7	7	7	2	2	2
MISSION	0.7	0	0	1.	5	5.	0	$\cdots 0_{0}$	0	5.	5	5.
HEADING	0.7	0	0	0.	0	0.	4	\% 11	1	4, ${ }^{2} 2$	2	7.
ENDURANCE	0.31	15.	12	12	10	8	11	13	9	7.	9	9
TF NUMBER	0-3	0.	0	0	3	3	1	1	1	\% $\times 3$	3	3.
TF ADMIN	0.3	1	2	2	0	0	1	1	1	0	0	0.
REINFORCEMENT	0.9	2	3	(0) 9, (0)	0	0	0	0	0	0.	0	0
TF COMMAND	Y/N	Y	N	N	Y	N:	Y	N	N	N\%	N	N
StART AREA	(x, y)	21,48	21,48	21,48	15,46	13,42	65,26	55,44	54,51	4,37	1,36	32,63
SEARCH PATIERN	Y/N	N,NE,NW	-	NINENW	,	,		,		$\stackrel{*}{ }$,
TASK GROUP NUM.	1.23	12 (9a)	13 (9a)	14. (9a)	15 (9a)	1 (9b)	2 (9b)	3, (9b)	4 (9b)	5. (9b)	6 (9b)	7. 9 (9b)
FLAGSHIP	[-]	TR 16.	CL 2	CL3	TR 8	BE 06.	CA 40	CL146,	CL199	Indomitable.	CL2	CLL 12.
TOTAL SHIPS	[-]	1	7	3. \times	1	5.	10	15. \times	10	5.	4	7.
OBJECTIVE	1.23	14.	0	0	14	0.	0	1, \% \times,	1	0	0	0
MISSION	0.7	5.	0	0	5	0	0	5. $1 \times$	5	0	0	2.
HEADING	0.7	4	0	0	4	2	2	0	0	\% 11	1	1
ENDURANCE	0.31	14	17	15	18	12	14	9	8	14.	17	12
TF NUMBER	0.3	3.	2	2	3	0	0	1	1	0	2	2
TF ADMIN	0.3	0	2	2	0	1.	1	0	0	2	1	1
REINFORCEMENT	0.9	0	0	0	0	9 9 (0)	$9(0)$	0	0	9.101	0	0
TFCOMMAND	Y/N	N	Y	N*,	N	N	N	Y	N	Y	Y	N
START AREA	(x, y)	58,22	40,67	40,67	60,21	6,65	8,65	21,67	26,61	10,68	40,70	40,70
SEARCH PATIERN	Y / N	- ${ }^{\text {a }}$	-	, \% 0 , \times.	-	NE,E,SE	E	NE	-	N,NE;E:	-	\%
TASK GROUP NUM.	1-23	8 (9b)	9 (9b)	10. (9b)	1 (9c)	2. (9c)	3 (9c)	4. 9 c)	5 (9c)	6 (9c)	7 (9c)	8. (9c)
FLAGSHIP	[-]	DD216.	CL 3	TR 4	BB 06	CA 40 \%	CL 66	Indomitable:	CLI46	CL 89.	CL 52	CL2.
TOTAL SHIPS	[-]	5.	6	2	9	10	11	6.	5	4.	3	17.
OBJECTIVE	1.23	0	0	13	0	0	0	0	0	0.	0	0
MISSION	0.7	0	0	\% \times, 5	1	3.	2	0.	0	5.	5	0
HEADING	0.7	0	0	\bigcirc	2	2.	2	\bigcirc	0	\% 0.6 \%	6	0
ENDURANCE	0.31	18.	18	1.4	11	10	9	14	8		9	7.
TF NUMBER	0.3	2	2	3	0	0	0	0	1	2.	2	1.
TF ADMIIN	0.3	1	2	0	1	1	1	\% 22	1	0.	0	3
REINFORCEMENT	0.9	3.	-1 2	0	9 (0)	9 (0)	$9(0)$	9. (0)	0	0.	0	1
TFCOMMMAND	Y/N	N	N	N	N	N	N	Y	N	N	N	Y
START AREA	(x, y)	40,67	40,67	64,58	9,61	13,62.	10,62	10,62	26,64	20,69	25,70	40,67.
SEARCHPATIERN	Y/N	,	,	,	NE-SE	NE-SE	-	NE:SE	-	\%		,

JSS - Axis Task Groups

TASK GROUP NUM.	1.23	(9c)	10 (9c)
FLAGSHIP	[-]	TR 15	CL 12
TOTAL SHIPS	[-]	1.	3
OBJECTIVE	1-23	5	0
MIISSION	0.7	5	0
HEADING	0.7	7	6
ENDURANCE	0.31	6	10
TF NUMBER	0.3	2	2
TF ADMIN	0.3	0	1
REINFORCEMENT	0.9	0	0
TFCOMMAND	Y/N	N	Y
StART AREA	(x, y)	41,71	12,64
SEARCH PATIERN	Y/N	\cdots	-

TASK GROUP NUM.	1-23	9.19 a	10 (9a)	11. (9a)	1 (9b)	2. (9b)	3 (9b)	4. (9b)	5 (9b)	6. (9b)	7 (9b)	8. ${ }^{\text {(9b) }}$
FLAGSHIP	[-]	CA 13.	CA9	CL 15	CL 15	CA: 8	CL 11	CA 11	CL 16	CA. 9	CA 10	CL 13.
TOTAL SHIPS	[-]	7	5	7.	19	4*	5	8 8\%	20	9	8	6
OBJECTIVE	1-23	0	0	0	10	0	0	0	8	0	0	0
MISSION	0.7	0	0	0	5	0	1	0	5	0	0	2
HEADING	0.7	4	4	6.	4	4	4	4	3	4	4	4
ENDURANCE	0.31	14	14	13	13	17.	12	16	12	17	18	10
TF NUMBER	0.3	1	1	0	0	0	0	3	1	3	1	3 .
TF ADMIN	0.3	2	2	2	2	2	2	2	1	2	2	2.
REINFORCEMENT	0.9	0	0	0	0	0	0	0	2	0	0	0
TF COMMAND	Y/N	N	Y	N	N	Y	N	N	N	Y	Y	N
STARTAREA	(x, y)	19,32.	20,33	80,24:	70,46	72,46\%	71,43	76,41.	53,43	72,38	57,37	72,38
SEARCH PATIERN	Y/N	SE-SW	SE-SW	<	\cdots	SE:SW	E.SW	SE-SW	-	SE-SW	SE-SW	,

TASK GROUP NUM.	1-23	9 (9b)	1 (9c)	2. (9c)	3 (9c)	4 (9c)	5 (9c)	6. (9c)	7 (9c)	8 (9c)	9 (9c)	10. (9c)
FLAGSHIP	[-]	DD 77 .	CA 18	CL8.	CA 9	CL 16	CL 12	CA 6.	CL 15	CL 13	Ryujo	CA 13
TOTAL SHIPS	[-]	4	6	8 8.	8	12	14	3 3	12	13	2	7.
OBJECTIVE	1-23	19	0	0	0	,	4	0	6	3	0	0
MISSION	0.7	5	0	2	1	5	5	0	5	5	1	0
HEADING	0.7	5	4	4.	4	4.	4	4	4	4	4	4
ENDURANCE	0.31	10	13	9	12	11	10	12	9	10	11	13
TF NUMBER	0.3	2	2	2	2	1	0	1.	1	0	0	0
TF ADMIN	0.3	1.	2	2	2	2	2	2	2	2	2	2
REINFORCEMENT	0.9	0	0	0	0	2	0	0	0	0	0	0
TF COMMAND	Y/N	Y	Y	N	N	N	N	Y	N	N	N	Y
START AREA	(x, y)	45,42	55,64	55;64:	56,63	51,52	28,44	55;52	51,52	29,45:	27,45	27;47.
SEARCH PATIERN	Y/N		E.W		S-W		,	SE-SW	,	,	,	SE:SW

The Destruction of the Polish Air Force 1st - 5th September, 1939
 A SCENARIOFOR EUROPEABLAZE By Ian Trout

> The opening shots of World War II were fired on the early morning of September 1st, 1939, somewhere above the city of Kracow in southwestern Poland. No. 123 sqn, flying PZL 11c's, from the III/3 Fighter Dyon of the Polish Air Force had tangled with some Ju 87B's of I Gruppe, Stukageschwader 2. Poland's struggle would be brief, if bloody. For the rest of the world, six years of grim war lay ahead. . .

THE SITUATION

The Luftwaffe forces assigned to the solution of the 'Polish Question' were deployed between Kesselring's Luftilotte 1 in the north and Lohr's Luftilotte 4 in the south. Some 1,200 front line aircraft were available for employment, backed up by substantial reserves of both pilots and planes. A further 1,000 aircraft were based in western Germany, including a large number of modern fighters, as a precaution against possible British and

French intervention. The bulk of the medium bomber gruppen and nearly all of the dive bombers, however, were arraigned against Poland.
The Polish Armed Forces were considered by many to be among the best in Europe. In both civil and military spheres, aviation had been accorded an important place. The burgeoning aircraft industry, centered in the industrial region to the south of Warsaw, was capable of completing some 150 aircraft per month at the time hostilities began.

On August 22nd, the result of four months of intense diplomatic wrangling was revealed to the world. The SovietGerman Non-Aggression Treaty was ratified. Hitler had succeeded in isolating Poland from every potentially useful ally. Poland's mutual defense pacts with England and France promised some longterm assistance; precious little could be done for her imminent peril.
The Poles did the best they could. Their Air Force was deployed in two components. A combined fighter and bomber group were held in reserve in Warsaw while the remaining strength was apportioned to the various armies protecting the frontier. Some 500 aircraft were operational, of which only the PZL P37los bomber was of modern design. The Polish fighters, especially, would be outclassed by their more powerful opponents.
Within thirty days the Polish Army was destroyed or in flight, the Air Force wrecked and the Government dispersed.

THE SCENARIO

[^1]CASE WHITE - Centres

CENTRE NUMBER	1-63	1	2	3.	4	5.	6	7.	8	9	10	11.
CENTRENAME	[11]	Warsaw	Modlin	Ciechanow	Torun	Danzig:	Gdynia	Poznan.	Kalisz	Lodz.	Piotrkow	Radom:
LOCATION	(x, y)	18,16.	17,15	16,14	14,15	13,9	12,9	11,15.	13,18	15,18.	16,20	18,19
POPULATION	0.3	+3.	1	0	1	1.	1	2	0	2	0	1
INDUSTRY	0.3	3.	0	0.	1	0	0	1.	0	2	1	3
PORT FACILITIES	0.3	0	0	0	0	,	2	0	0	0	0	0
COMMMUNICATIONS	0.3	3.	2	2	2	0	0	2	1	2	1	1
ALLIED	Y/N	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	V
CENTRE NUMBER	1-63	12	13	14.	15	16.	17	18.	19	20.	21	22.
CENTRE NAME	[11]	Zwolen	Deblin	Sandomierz	Kracow	Gorlice:	Przemysi	Lwow.	Tarnopol	Cheim	Brest	Pinsk
LOCATION	(x, y)	19,19.	20,19	19,21	17,24	19,24.	22,25	2.5,25	29,25	23,20.	24,18	28,17.
POPULATION	0.3	1	2	1.	2	1	0	2.	0	1.	1	1
INDUSTRY	0.3	2	3.	2.	1	1.	0	1.	0	0.	0	0
PORT FACILITES	0.3	0	0	0	0	0	0	0.	0	0.	0	0.
COMMUNICATIONS	0-3	0	0	1.	2	2	1	3.	2	1.	3	2
ALLIED	Y/N	Y	Y	Y	Y	Y	Y	Y	Y	γ	Y	Y
CENTRE NUMBER	1.63	23.	24	25.	31	32	33	34.	35	36	37	38.
CENTRE NAME	[11]	Blalystok	Grodno	Vilna	Memel	Konigsburg	Johanisburg	Osterode	Butow	Schlochau	Schneiderml	Berlin.
LOCATION	(x, y)	21,14	23,11	26,8	18,7	16,9	19,11	16,12	11,9	10,12	9,13	3,12.
POPULATION	0.3	1.	1	1	1	2	0	0	0	0.	0	3.
INDUSTRY	0-3	1	0	1	0	1.	0	0	0	0	0	3.
PORT FACILITIES	0-3	0	0	0	2	3.	0	0	0	0	0	0
COMMMUNICATIONS	0.3	1	2	0	0	1	2	2	1	2.	2	3.
ALLIED	Y/N	Y	Y	\boldsymbol{Y}	N	N	N	N	N	N	N	N
CENTRE NUMBER	1.63	39	40	41.	42	43.	44	51.	52	53	54	55
CENTRE NAME	[11]	Frankfurt	Glogau	Breslau	Ostrava	Vienna	Lubovina	Polotsk	Minsk	Korosten.	Kiev	Zhitomir
LOCATION	(x, y)	5,16.	8,18	12,21	12,24	8,29	19,26	33,8	31,11	33,17	37,19	33,20.
POPULATION	0-3	2.	1	2	0	3.	0	1	2	0	3	0.
Industay	0.3	2	1	1.	0	3.	0	1	2	0	3	0
PORT FACILTIES	0.3	0	0	0	0	0	0	0.	0	0	0	0
COMMUNICATIONS	0.3	1	2	2	1	1	1	2	2	2	2	2
ALLIED	Y/N	N:	N	N	N	N	N	N	N	N	N	N

CW - Time

DATE	1.31	1.
MONTH	1-12	9
YEAR	0.63	39
LENGTH	1.31	5
dAWN	3-10	6.
DUSK	15-22	17
MOON	0.27	12
FORECAST	0.3	1

CW - Weather

CASE WHITE - Doctrine

NATIONALITY		AXIS	ALLIES
MISSIONS	0.15	0.	0
POPULATION	0.7	3.	0
Industry	0.7	6.	2
COMMUNICATIONS	0.7	5	7
PORT FACILITES	0.7	0	0
AIRFIELDS	0.7	7	7
RADAR	0.7	0.	0
SHIPPING LANES	0.7	0	0
SUPREME COM.	0.7	5.	4
C-IN-C	0.7	4	3
GROUND ECM	0.7	1	0
ORDNANCE EFFECT	0.3	2	
AA FRE CONTROL	0-3	2	0

CW - Axis Commands

	NAME	CURSOR	THASH.	PRIOR.
C-IN-C	GOERING	3	N.A.	N.A.
COMMANDER \#1	KESSELRING	3	60	7
COMMANDER \#2	LOHR	3	50.	6
COMMANDER \#3	(ALKSNIS)	(2)	(20)	(4)
COMMANDER \#4	*	.	*.	.
COMMANDER 敬	.	-	*	-

CW - Allied Commands

	NAME	CURSOR	THRSH:	PRIOR.
C.IN-C	HELLER	1	N:A.	N.A.
COMMANDER \#1	PAULIKOWSK1	1	60	
COMMANDER \#2	(ALKSNIS)	(2)	(30)	(4)
COMMANDER \#3				
COMMANDER \#4			.	
COMMANDER \#5				

Take note that there are no radar stations or shipping lanes for either side in this scenario.
Enemy aircraft will not be detectable until they overfly friendly territory. This makes it imperative to keep regular patrols on the border. Keep them just inside your own territory to avoid their detection.
If the task of entering the data for this scenario appears too daunting, there is an alternative. Read the editorial to this issue for the details of our scenario disk offer. For those who choose to type up the scenario themselves, there are some helpful suggestions in the Notes section to minimize your work-load.

The German Air Force has the task of eliminating both the Polish Air Force and aircraft industry. It may not be as easy to accomplish as expected. Contrary to most contemporary assessment and established myth, the over-riding element in the destruction of Poland was the innovative and resolute use of armoured formations supported, certainly, by an airborne artillery barrage.
The Polish Air Force was, in the end, annihilated. But for the first week or so, it offered some spirited resistance. Keep in mind that most of the German bombers are very vulnerable to any sort of fighter resistance.

As the Polish commander, you will have all sorts of problems. The best tactic is to concentrate on single German raids. Avoid all contact with the Bf 109E; it's just too tough.

Variations

1. Assume the Poles had had the foresight to acquire some modern aircraft designs from her Allies. Add plane types 18-20 to the data base. Add squadrons 43-48 (Hawker Hurricanes, Morraine Saulnier 406s and Fairy Battles) to any airbases in Poland. The best airfield choices are 6-8 and 17-19. Increase the

CASE WHITE - Map

SCENARIO SIX 'CASE WHITE'

Allied Commands
\# 1 Pawlikowski
\# 3 (Alksnis)

Axis Commands
\# 1 Kesselring
\# 2 Lohr
\# 3 (Alksnis)

MAP NOTE

Land hexes in Poland, Latvia, Lithuania and Rumania are considered Allied for the purposes of Observer Corps detect ion and pilot/crew recovery.

CASE WHITE - Squadrons

SONNUMBER	1-255	11.	2	3.	4	5.	6	7.	8	9	10	11		13	14			17
Son I.D.	[6]	111 F	112F	113 F	114F	123F	2118	2128	216B	2178	21 B	228	64B	65B	16R	141F.	142F	42 B
PLANE TYPE	1.37	2	2	2	2	1	4	4.	4	4.	3	3.	3	3.		2.	2	,
OFFICIAL EST.	1.31	12.3	12	12	12	12	9	9.	9	9	12	12	12	12	9	12	12	12
InItIAL EST.	1-31	12	11	10	12	10	9	9	9	9	10	10	10	10	7	12	10	10
VEIERAN	0.31	0	1	0	2	0		0.	0	0		1.	0	0	0	0.	0	0
EXPERIENCED	0.31	12	11	9	11	10	8	9	9	.	-	。		10	7	11	10	,
FATGue	0.7	7	7	7	7	7	7	7	7	7.	7	7.	7	7	7	7.	7	7.
NIGHT OPS	Y/N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
RECONOPS	Y/N	N	N	N	N	N.	N	N	N	N	N	N	N	N	Y	N	N	N
NAVALOPS	Y/N	N	N	N	N	N	N	N	N	N	N	N	N	N	Y	N	N	N
PATHFINDER	Y/N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SON NUMBER	$1-255$	18.	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
SONI.D.	[6]	43 R	46R	1317	132 F	34B	33R	36 R	161 F	162 F	32B	63R.	66R	121 F	122F	248	23 R	26 R
PLANE TYPE	1-37	5	5	2	2	3	5	5.	2	1.	3	6.	5	2.	2	3.	6	5
OFFICIAL EST.	1-31	9	9	12	12	12	9	9	12	12	12	9.	9	12	12	12	9	9
InITIAL EST.	1-31	8	6	12	10	10	7	7.	12	10	10	7	7	10	10	10	7	7
VETERAN	0.31	0	0	0	0	0	0	0	1	1.	0	0.	0	0	1		0	0
EXPERIENCED	0.31	7.	6	10	9	9	7	6	10	8	9	5.	7	9.	9	12	7	7.
FATIGUE	0.7	7.	7	7.	7	7	7	7	7	7.	7	7	7	7.	7	7	7	7.
NIGHT OPS	Y/N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
RECONOPS	Y/N	Y	Y	N	N	N	Y	Y	N	N	N	Y	Y	N	N	N		Y
NAVAL ops	Y/N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
PATHFINDER	Y/N.	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SONNUMBER	1-255	35.	36	37.	38	39	49	50%	51	52	53	54	55	56	57	58	59	60
SON I.D.	[6]	152 F	418	53R	318	568.	1/JG1	S/JG1.	1/3G21	1/JG2	S/JG2	N/3G2	1/JG20	1/363	S/JG3	1/291	2/2G1	$1 / \mathrm{KG1}$
PLANE TYPE	1.37	2	3	,	3	\%	8	8	7	8.	8	7.	7	8.	8	9	7	15
OFFICIAL EST.	1.31	12.	12	\bigcirc	12	9.	31	9	31	31	9	9	31	31	9	31	31	31
InITIAL EST.	1.31	10	10	7	10	7	31	9	29	31	9	9	21	31	9	31	31	31
VETERAN	0.31	0	0	0	0	0	12	6.	8	10	4	1	4	10	5	8	5	6
EXPERIENCED	0.31	9	8	6.		6	17	3.	18	18	5	4	14	20	4	20	21	22
FATGUE	0.7	7	7	7	7	7.	7	7	7	7	7	7.	7	7	7			7
NIGHT OPS	Y/N	N	N	N	N	N	N	N	N	N	N	Y	N	N	N	N	N	N
RECONOPS	Y/N	N	N	Y	N	Y	N	N	N	N	N	N	N	N	N	N	N	N
NAVAL OPS	Y/N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
PATHFINDER	Y/N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SON NUMBER	1.255	61	62	63	64	65.	66	67	68	69	70	71	72	73.	74	75	76	77
SON I.D.	[6]	2/KG1	S/KG1	1/1/K2	2/KG2	S/KG2	2/KG3	3/KG3	S/KG3	2/KG26	1/KG27	2/KG27	3/K627	S/KG27	1/KG53	1/5G1.	2/SG2	3/SG2
PLANE TYPE	${ }_{1}^{1.37}$	17.	15	12.	14	14	14	14	14	17.	16	16.	16	16	17	10	10	10
OfFICIAL EST.	1.31	31	9	31	31	9	31	31	9	31	31	31	31	,	31	31	31	31
IINITIAL EST.	1.31	31	¢	31	31	9	31	31	9	31	31	26	28	9	31	31	31	31
VETERAN	0.31	8.	4	8.	10	3	7	9	2	6	8	6.	5	3.	7	10	7	8.
EXPERIENCED	0.31	20	5	20	22	6	25	20	7	22	23	19	20	5	26	22	23	25
FATGUE	0.7	7.	7	7	7	7	7	7	7	7	7	7.	7	7.	7		7	7
NIGHTOPS	Y/N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
RECONOPS	Y/N	N	N	N	N	N	N	N	N	N	N	N	N	N	N			N
NAVAL OPS	Y/N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	W	N	N
PATHFINDER	Y/N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SON NUMBER	1.255	78	79	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94
SON I.D.	[6]	S/SG2	12/La	2K/LG1	3K/LG1	4S/LG1	1J/LG2	N/LG2	1F/120	1F1121.	2F/121	3F/121	4F/121	11JG76:	S/JG76	1/JG77	2/J677	S/3G77
PLANE TYPE	1-37	10	9	17.	17	10.	8	7.	13	13.	13	13.	13	8.	8	8	8	8
OFFICIAL EST.	1-31	9	31	${ }^{31}$	31	31.	31	9	12	12.	12	12.	12	31	-	31	31	
Initial est.	1.31	9	31	31	31	31.	31	9	12	11	10	12	11	31	9	31	31	9
VETERAN	0.31	3	6	10	8	8	9	.	2	1	0	1	0	9	3	10	11	4
EXPERIENCED	0.31	5	21	25	28	31	27	7	11	10	9	11	11	30	7	31	31	6.
fataue	0.7	1	7	1	7	7	7	7	7	7	7	7	7	7	7	7	7	7.
NIGHT OPS	Y/N	N	N	N	N	N	N	V	N	N	N	N	N	N	N	N	N	N
RECONOPS	Y/N	N	N	N	N	N.	N	N	Y	Y	Y	Y	Y	N	N	N	N	N
NAVAL OPS	Y/N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
PATHFINDER	YN	N	N	N	N	N.	N	N	N	N	N	N	N	N	N	N	N	N
SGN NUMBER	1.255	95	96	97	98	99	100	101	102	103	104	1.05	106	107	108	109	110	111
SON I.D.	[6]	1/2G2	1/2G76	1/KG4	2/KG4	3/KG4	S/KG4	1/KG76	3/KG76	S/KG76	1/KG77	2/KG77	3/K977	S/KG77.	1/SG2	115677	2/5977	S/5977
PLANE TYPE	1.37	7.	9	16.	16	16	16	14	12	14	14	14	14	14	10	10	10	10
OFFICIAL EST.	1.31	31	31	31	31	31		31	31	9	31	31.	31	9.	31	31	31	9
InITIAL EST.	1.31	31	31	31	31	31	9	31	31	9	31	31	31	9	31	31	31	9
VEIERAN	0.31	4.	6	12	9	9	5	9	7	3.	8	11.	10	,	11	6.	9	3
EXPERIENCED	0.31	21	24	20	22	24	5	25	26	7	26	23	26	7	27	25	24	,
fataue	0.7	.	7	,	7		7	7	7	7	7	I	7	7.	7	7.	7	7.
NIGHT OPS	Y/N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
RECONOPS	Y/N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
NAVALOPS	Y/N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
PATHFINDER	Y/N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
SON NUMBER		112.	113	114	115	116	117	118	119	120	40	41	42	43	44	45	46	47
SQN I.D.	[6]	115976	S/SG76	2S/LG2	2F/122	3F1123	1F/124	4S/186	5J/186	6J/186	55B	151 F	518	1FIFP.	2FIFP	3 FIFP	4FIFP	5F/FP
PLANE TYPE	1.37	10.	10	11	13	13.	13	10	7	7.	3	1	3	18.	18	20	20	20
OFFICIAL EST.	1-31	31	9	31	12	12	12	12	12	12.	12	12.	12	12	12	12	12.	12
InITIAL EST.	1.31	31	9	31	12	12	11	12	12	12	10	10	10	12	12	12	12	12
VETERAN	0.31	9	4	12.	1	2	2	2.	1	0	0	,		1.	1	2	1	0
EXPERIENCED	0.31	21.	6	31	10	\checkmark	10	7	7	T	10	9	9	12	10	9	11	12
FATGUE	0.7	7	7	\%	7	7	7	7	7	7.	7	,	7		7	7.	7	7.
NIGHTOPS	Y/N	N	N	N	N	N	${ }^{\text {N }}$	N	N	N	N	N	N	N	N	N	N	N
RECONOPS	YN	,	N	N	Y	Y	Y	N	N	N	N	N	N	N	N	N	N	N
NAVAL OPS	Y/N	N	N	N	N	N	N	Y	N	N	N	N	N	N	N	N	N	N
PATHFINDER	Y/N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N

CW - Squadrons (Cont.)

SONNUMBER	1-255	48	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
SON I.D.	[6]	IB/FP	1F/3A	2F/3A	3F/3A	11/3A	2L/3A	3L/3A	1R/3A	$1 \mathrm{~B} / 3 \mathrm{~A}$.	2B/3A	3B/3A	2R/3A	1 F/11A	2F/11A	$3 \mathrm{~F} / 11 \mathrm{~A}$	4F/11A	5F/11/
PLANE TYPE	1-37	19	23	2.2	22	28	28	28	27	24	24	24	27	21	23	22	22	23
OFFICIAL EST.	1-31	12	16	16	16	12	12	12	12	12	12	12.	12	16.	16	16	16	16
INITIAL EST.	1-31	12	15	15	15	12	12	12	12	12	12	12	12	15	15	15	15	15
VETERAN	0.31	0	2	2	0	1.	0	0	0	1	1	0	,	2	0	1	0	1
EXPERIENCED	0-31	11.	12	8.	10	7	8	6	10	8	5	9	9	10	9	7	8	10
FATIGUE	0.7	7.	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
NIGHT OPS	Y/N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
RECONOPS	Y/N	N	N	N	N	N	N	N	Y	N	N	N	Y	N	N	N	N	N
NAVAL OPS	Y/N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
PATHFINDER	Y / N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	$\stackrel{N}{N}$

SON NUMBER	1.255	141	142	143	144	145.	146	147	148	149	150	151	152	153	154	155	156	157
SQN I.D.	[6]	$6 \mathrm{~F} / 11 \mathrm{~A}$.	1L/11A	2L/11/A.	3L/11A	1R/11/A	1B/11A	28/11A	3B/11A	2R/11A	1F/10A	2F110A	3F/10A	4F/10A	5F/10A	6F/10A	1L/10A	2L/10A.
PLANE TYPE	1-37	23	28	28	28	27	24	24	24	27	23	23	23	22	21	21.	28	28.
OFFICIAL EST.	1-31	16	12	12.	12	1.12	12	12	12	12	16	16	16	16	16	16.	12	12
INITIAL EST.	1-31	15	12	12	12	12	12	12	12	12	15	15	15	15	15	15	12	12
VEIERAN	0.31	0.	0	1	0	1	1	0	0	0	0	2	1	1	3	2	0	0
EXPERIENCED	0-31	7.	7	9	7	11.	11	9	6	10	10	10	8	10	11	10	8	10
FATIGUE	0.7	7.	7	7	7	7.	7	7	7	7.	7	7	7	7.	7	1	7	10
NIGHT OPS	Y/N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
RECONOPS	Y/N	N	N	N	N	Y ${ }^{\text {a }}$	N	N	N	Y	N	N	N	N	N	N	N	N
NAVAL OPS	Y/N	N	N	N	N	N,	N	N	N	N,	N	N^{\sim}	N	N	N	N	N	$\stackrel{N}{\mathrm{~N}}$
PATHFINDER	Y/N	N	N	N	N	N	N	N	N	N,	N	N	N	N	N	N	N	N

SONNUMBER	1-255	158.	159	160	161	162	163	164	165	166.	167	168	169	170	171	172	173	174
SQN I.D.	[6]	3L/10A	1R/10A	18/10A	2B/10A	3 BI 10 A	4B/10A	5B/10A	6B/10A	2R/10A	1HB/3G	$2 \mathrm{HB} / 3 \mathrm{G}$.	3HB/3G	1RB/3G	1HB/7G	2HB/7G	$3 \mathrm{HB} / 7 \mathrm{G}$	1RB/7G
PLANE TYPE	1.37	28	27	24	24	24	24	24	24	27	26	26	26	26	25	25	25	25
OFFICIAL EST.	1-31	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12
INITIAL EST.	1-31	12.	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12
VEIERAN	0.31	11	0	0	2	,	0	0	0	0	1	0	0	0	0	0	2	0
EXPERIENCED	0.31	9	9	11	11	9	7	8	5	9.	12	12	10	12	10	11	9	11
FATIGUE	0.7	7	7	7	7	7	7	7.	7	7	7	7	7	7	7	1	7	7
NIGHT OPS	Y/N	N	\cdots	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
RECON OPS	Y/N	N	Y	N	N	N	N	N	N	Y	N	N	N	Y	N	N^{N}	N	N
NAVAL OPS	Y/N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
PATHFINDER	Y/N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	${ }^{\mathrm{N}}$	N	${ }^{\mathrm{N}}$

CASE WHITE - Plane Types

PLANE NUMBER	1-37	1	2	3.	4	5.	6	7.	8	9.	10	11.	12	13.	14
PLANE TYPE	[11]	PZLP70.	PZL P11c	PZLP P23b	PZL P37b	Lub R R xIII	RWD 14	Bf. 109 D .	Bf 109E	Bt 1110 C	Ju 87B	Hs 123.	Do 17E	Do 17P.	Do 172
ROLE	0.3	0	0	2	2	3.	3	0 ,	0	1	2	2 2,	2	3	2
CREW	0.7	1.	1	3.	4	2	2	1	1	3	2	1. ${ }^{\text {a }}$,	3	3.	4
FUEL	1-255	25.	26	51.	122	36.	36	19. ${ }^{\text {a }}$	18	48,	27	29.75	74	88	69
PAYLOAD	0.63	0.	1	6.	19	1	1	0	0	4,	4	4	6	0	8
SERVICE CEILING	11-41	27.	26	24.4.3	30	15.3.3	16	29	34	33.	27	30	20	23.	23
MAXIMUM SPEED	0.41	10	12	9	14	7	7	16	18	\% 17	12	11	11	13.	13
OPT. ALTITUDE	0.31	13.	18	7	11	5.	7	12	12	20	14	4	7	13	13
CRUISING SPEED	0.31	9.	10	8	11	6.	6	13	14	11.	11	10	8	11.	11
CLIMB RATE	0.15	10.	14	7.	6	3.	5	13	15	10	8	13.	3	4	3
FREPOWER	0.7	2	2	1	1	1.	1	4.	5	5	1	2.4	2	1.4	2
MANOEUVER.	0.7	7.	7	4.	3	6.	6	5 \% \times 相	5	3.	4	6 \%	3	3, ${ }^{\text {a }}$	3
VULNERABILITY	0.7	3.	4	3.	4	2	3	3.	4	3.	2	3.	2	3.	3
RADAR	0.7	1.	1	0	0	0.	0	3.	3	3.	0	0 ,	0	0	0
REPL. RATE	0.7	2.	4	4.	3	2.	2	2.	3	3.	3	3	1	1	3
ECM	0.7	0.	0	0	0	0.	0	0	0	0	0	0	0		0
ALLIED	Y/N	Y	Y	Y	Y	Y	Y		N	N	N	N ,	N	N,	N
NIGHT	Y/N	N	N	N***	N	N	N	N	N	N	N	$\mathrm{N} \times$	N	N	N

PLANE NUMBER	1-37	15.	16	17.	18	19	20	21	22	23.	24	25.	26	27.	28
PLANE TYPE	[11]	He 111E:	He 111P	$\mathrm{He}, 111 \mathrm{H}$	Hurricane	Battle	MS 408	1-15b:	1.153	1.16	SB-2	TB.3	DB-3B	R. 5	Po. 2
ROLE	0-3	2.	2	2	0	2	0	0	0	0	2	2	2	3	2
CREW	0.7	4	4	5	1	3	1	1.	1	1.	3	5	3	2	2
FUEL	1-255	56	68	83	30	57	23	33	29	28.	44	145	141	42	39
PAYLOAD	0.63	16	16	24	0	4	0	t	1	0	8	29	18	3	2
SERVICE CEILING	11-41	23.	26	26.	34	25	31	32.	35	30	28	25.	32	2.1	13
MAXIMUM SPEED	0.41	12.	12	13.	15	13	15	12.	14	14.	13	9	13	7.	5
OPT. ALTITUDE	0.31	13.	15	16.	18	15.	15	15.	16	15.	13	18.	22	10	3
CRUISING SPEED	0.31	11	11	11	10	10.	12	9	11	9	10	8	10	7.	5
CLIMB RATE	0.15	2.	2	2	14	6.	12	13	14	15.	6	2	9	8.	7
FREPOWER	0.7	1.	2	3	4	1	3	3.	3	4.	2	2	1	1	1
MANOEUVER.	0.7	3	3	3	5	3.	5	6.	6	5	3	0	3	5	5
VULNERABILITY	0.7	2	3	3.	3	3.	4	2.	3	3	3	2	4	2	1
RADAR	0.7	0	0	0	1	0	1	1	1	1	0	0	0	0	0
REPL RATE	0.7	2	2	\% 5	2	2	3	3	4	5	5	2	4	2	4
ECM	0.7	0	0	0	0	0.	0	0	0	0	0	0	0	0	0
ALLIED	Y/N	N	N	N	Y	Y	Y	N	N	N	N	N	N	N	N
NIGHT	Y/N	N	N	N	N	N	N	N	N	N	N	N	N	N	N

CASE WHITE - Airfields

AIRFIELD NUMBER	1.127	4.	2	3, ${ }^{\text {a }}$	4	5	6	, 7, \% , ,	8	9	10	11
AIRFIELD NAME	[11]	Okecie	Warsaw	Kracow	Lwow	Lida	Widzew	Sokolniki	Lublinek	Igolomie	Klimontow	Palczowice
LOCATION	(x, y)	18,16	18,16	17,24.	25,25	24,12	14,18	14,19	14,18	17,24:	18,24	18,25
ASSIGNED SONS	[4]	1.4	6-9	5,10011	12-13	14,40.	25-26	27	28-29	30.31.	32	33.34
THEATRE	1-5	1	1	1	1	,	1	1.	1	1	1	1
DAMAGE STATUS	0.15	15	15	15	15	15	15	15.	15	15	15	15.
DAMAGE CONTROL	0.3	1.	1	1.	1	1	1	1	1	1	1	1
SEALED	Y/N	Y	Y	N	N	N	N	N	N	N	N	N
ALLIED	Y/N	Y	Y	Y	Y	Y	Y	Y \%	Y	Y	Y	Y
AIRFIELD NUMBER	1.127	12	13	14	15	16.	17	18.	19	20	21	22
AIRFIELD NAME	[11]	Werynian	Mrowla	Szpondowo	Zdunowo	Sokolowek	Markowo	Zduny	Niedzwielz	Dziez inica.	Mierzewo	Sielec
LOCATION	(x, y)	20,25.	20,25	16,15.	17,14	17,14	13,14	14,15	13,14	12,16	13,16	13, 16
ASSIGNED SONS	[4]	38.	39	35.	36	37.	15-16	17.	18-19	20.21,	22	23.
THEATRE	1.5	1	1	1.	1	1	1	1	1	1, 1 ,	1	1
DAMAGE STATUS	0-15	15	15	15	15	15	15	15	15	15	15	15
DAMAGE CONTROL	0.3	1	1	1	1	1	1	1.	1	1	1	,
SEALED	Y/N	N	N	N	N	N	N	N	N	N	N	N
ALLIED	Y/N	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
AIRFIELD NUMBER	1-127	23	24	25	30	31	32	33	34	35	36	37.
AIRFIELD NAME	[11]	Gwiazdowo.	Zalesie	Wierzbowo	Prenzlau	Mutilen	Stolp	Lottin	Schonfeld	Kolberg	Pinnow	Gabben
LOCATION	(x, y)	12,17.	18,20	18,19	5,12	4,14	10,8	7,12.	4,15	8,10.	6,11	4,15
ASSIGNED SONS	[4]	24.	41	42.	86,88	58.	76-78,82	83.	74,87	60,62	61	69
THEATRE	1-5	1.	1	1	1	1.	1	, \% 1.4	1	1.4	1	4
DAMAGE STATUS	$0-15$	15.	15	15	15	15	15	15	15	15	15	15
DAMAGE CONTROL	0.3	1	1	1	1	1.	1	1	1	1	1	1
SEALED	Y/N	N	N	N	N	N	Y	N	N	Y	N	N
ALLIED	Y/N	Y	Y	Y	N	N	N	N	N	N	N	N
AIRFIELO NUMBER	1-127	38.	39	40	41	42	43	44	45	46	47	48
AIRFIELD NAME	[11]	Werneuchen	Neubrandenb.	Konigsburg.	Neuhausen	Insterburg	Jesau	Elbing	Furstenwald	Cottbus	Liegnitz	Heiligenbeil
LOCATION	(x, y)	5,13	4,11	16,9	4,20	18,8	16,12	15,9.	5,15	6,18	9,18	4,14
ASSIGNEDSONS	[4]	70,73	71	72	85	75	49-50,89	51,7,9	59	63,65	64	66.68:
THEATRE	1.5	1	1	$\checkmark 1$	1	$\cdots \times 1$	1	1	1	1.	1	1.
DAMAGE STATUS	0-15	15	15	- 15	15	15	15	15	15	15	15	15.
DAMAGE CONTROL	0.3	1	1	1.	1	1	1	1	1	1.	1	1
SEALED	Y/N	N	Y	N	N	N	Y	N	N	Y	Y	N
ALLIED	Y/N	N	N	N	N	N	N	N	N	N	N	N
AIRFIELD NUMBER	1-127	49	50	51	52	53.	54	55.	56	57	58	59
AIRFIELD NAME	[11]	Powunden	Doberitz	Zerbst	Straussberg	Greifswald	Brusterort	Bresiau	Neisse	Oels	Langenau	Zipser Neu,
LOCATION	(x, y)	5,16	3,12	5,16	6,14	4,11	16,8	12,24	11,21	5,21	5,20	8,28,
ASSIGNED SONS	[4]	80.81	52.54	56.57	55	84	118.120	92,94,116.	115	98,100	97,99	101,103
THEATRE	1-5	1	1	1.	1	1	1	2	2	2.	2	2
DAMAGE STATUS	0.15	15.	15	15	15	15	15	15	15	15.	15	15
DAMAGE CONTROL	0.3	1	1	1	1	1.	1	1.	1	1	1	1
SEALED	Y/N	N	Y	N	N	N	N	N	N	N	N	N
ALLIED	Y/N	N	N	N	N	N	N	N	N	N	N	N
AIRFIELD NUMBER	1-127	60	61	62	63	64	65	66.	67	71	72	7.3
AIRFIELD NAME	[11]	Vienna:	Grottkau	Brieg	Ohlau	Nieder Ell:	Altseidel	Neudort	Pilsen	Druya	Glubokoye	Polotsk
LOCATION	(x, y)	8,29	10,19	11,19	2,19	12,22	12,22	12,25	4,22	32,8	32,9	33,8
ASSIGNED SONS	[4]	90-91, 102	105,107	104,106.	96,117	$108,112.113$	95,114	109.111	93	125.127	128.131	132.135
THEATRE	1.5	2	2	2	2	\% 2	2	2	2	3.	3	3.
DAMAGE STATUS	0.15	15	15	\% 15	15	\% $\times 15$	15	15	15	15.	15	1.5
DAMAGE CONTROL	0.3	1.	1	1	1	1	1	1.	1	0	0	0
SEALED	Y/N	γ	N	N	N	N	N	N	N	N	N	N
ALLIED	Y/N	N	N	N	N	N	N	N	N	N	N	N
AIRFIELD NUMBER	1-127	74.	\% 75	76.	77	78	79	80	81	82	83	84
AIRFIELD NAME	[11]	Borisov:	\% Minsk	Uzda	Yaslavi	Chudunov	Khmelnik	Zhitomir	Skvira	Barashi.	Kiev	Vasilkov
LOCATION	(x, y)	32,11.	31,11	31,12	30,11	32,21	32,22	33,20	34,22	32,20	37,19	37,19
ASSIGNED SONS	[4]	136-138	139-141	142.145	146.149	150-152.	153.155	156.159	160.162	163-166	167-170	171.17.4
THEATRE	1.5	3.	3	3	3	3.	3	3.	3	3	3	3
DAMAGESTATUS	0-15	15.	15	15	15	15.	15	15	15	15	15	15.
DAMAGE CONTROL	0-3	0	0	,	0	0	0	0	O	0	0	0
SEALED	Y/N	N	N	N	N	N	N	N	N	N	Y	N
ALLIED	Y/N	N	N	N	N	N	N	N	N	N	N	N

CASE WHITE - Flak Units

FLAK UNIT NUM.	1.63	1	2	3	4	5	6	7	8	9.	10	11	12	13	14	15	16	17
1.D. CODE	[1]	P	P	P.	P	P	P	P	P	P	P	P	P	P	P	P	P	P
LOCAION	(x, y)	18,16	17,15	16,14	14,15	13,14	12,9	11,15	13,16	13,18.	15,18	18,19	20,19	17,24	19,24	20,25.	25,25	24,18.
AAGUNS	1.255	44	12	9.	7	,	16	28	6	4	22	14	6	18	6		14	6
ALLIED	Y/N	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
FLAK UNIT NUM.	1.63	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
I.D. CODE	[1]	P	P	G	G	a	G	G	G	G	G	G	G	$\underline{6}$	G	G	G	
LOCATON	(x, y)	21,14	23,11	19,111	16,12	18,8.	16,9	11,9	10,8	8,10.	6,11	5,12	3,12	6,14.	4,14	5,16	6,18	8,18.
AAGUNS	1.255	12	16	12	12	6	36	12	18	12	12	6	66	12	6	36	12	24
ALLIED	Y/N	Y	Y	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N
FLAK UNIT NUM.	1-63	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51
1.D. CODE	[1]	G	a	G	G	G	G	G	G	G.	R	R	R	R	R	R.	R	R
LOCATON	(x, y)	9,18.	5,20	5,21.	11,19	12,21	12,22	12,25	19,26	8,29	32,9	33,8	30,11	31,11	32,22	33,20	34,22	37, 19
AAGUNS	1-255	12.	6	,	12	30	18	18.	12	42	4	12.	8	16	4	12	4	40
ALLIED	Y / \mathbb{N}	N	N	N	N	N	N	N.	N	N.	N	N	N	N	N	N.	N	N

victory threshold of the Polish Air Force to 30 !
2. In the time covered by the scenario, Soviet air operations against Poland were minimal. The Air Force organization, still recovering from the purges of the past three years, was not ready for battle. We can see what contribution they could have made. Add plane types 21-28, squadrons 125-174, airfields 71-84, centres 51-55 and flak units 44-51 to the the data base. The victory threshold of the Soviet Air Force is 20.
3. Another possibility is to explore the consequences which may have arisen from a more cordial Allied treatment of the Soviet call for a Triple Alliance against Germany in April of 1939. Both France and England vacilated over the Soviet proposal, fearful of the repercussions it could hold for the independent Eastern European states of Latvia, Lithuania, Estonia and Finland. These minor countries didn't want Russian troops marching through their territory.
Soviet obligations, under their own proposal, would have required them to come to Poland's aid in the event of German aggression. Add the Soviet data as described in the variation above, but with the following modifications. Soviet plane types, airfields, centres and flak units will need to be identified as Allied instead of Axis and all land hexes in Russia will have to be changed to Allied.
Any Soviet squadrons (except the 2 heavy bomber regiments at Kiev) may be based forward on Polish airfields. Allocate up to 40 additional flak points to any Polish flak units. Alter the victory threshold of the Allied controlled Soviet Air Force to 30. Reduce the threshold of each German command by 10.

NOTES ON THE DATA

1. Create the basic scenario first; i.e. with just the Polish and German units. Save this in four separate locations, naming them (in order) CASE WHITE, CW REINF, CW USSR (Axis), CASE WHITE USSR (Allied). Modify the save locations as instructed by the scenario variations.
2. As an aid to identifying the borders between the beligerents on the strategic map, you may wish to use a different terrain symbol for the major powers.
We suggest T3 for Poland, T4 for Germany, T6 for Axis Russia (or T7 for Allied Russia), T8 for Axis neutrals (Italy, Yugoslavia, Denmark, Sweden) and T9 for Allied neutrals (Lithuania, Latvia, Rumania)

The connection of peripherals such as printers has often been an area of confusion and trouble in the industry. These notes will attempt to explain the situation with our games and the Apple II family.

To successfully print from an Apple, three elements must be coordinated. They are the computer itself (as controlled by the program running at the time), the printer controller card and the printer itself. Since the elements in this chain can come from up to three suppliers (four if you count the controlling program), some care is needed to negotiate through to a successful conclusion.
In the case of CAW and EA the goal is the printing of the Apple's hi resolution graphics page. This process is called graphics printing or as the jargon has it, 'bit image printing'. It is called this because the printed image is done as a dot by dot reconstruction of the original. Some printers may not be capable of this, for instance most daisywheel printers can only print the predefined characters on their print wheel, and even some dotmatrix printers (mostly old models) can only print the characters pre-defined in their ROM. However the vast majority of dot-matrix printers can print graphics and it is to these that we will further address ourselves.
As constructed, the Apple knows nothing about printing. To get any printer to run on Apple some sort of extra controlling circuitry must be added. This is usually called an interface card, and it is the link between your computer and your printer. If you have any sort of Apple except a llc then you must have one of these cards to print anything at all. The card is installed in one of the expansion slots of the Apple, usually slot 1. (The Apple lic is a special case which we will come to in a moment.)
When any Apple program wants to print it must do so through the medium of the printer card. Most printer cards have a built in capability to deal with Apple hi-res graphics. When given the appropriate instruction, they are smart enough to reach in and get a hi-res graphics page in memory and print it out on a compatible printer. (This is often referred to as 'dumping' the hi-res page or a 'graphics dump'.)
It is this capability that CAW and EA rely
upon being available for them to print. The 'appropriate instruction' is the code that tells your printer card to print a hi-res graphics page. If you identify this code and tell the program in the 'printer set-up' routine, then pressing (CNTL)(P) inside CAW or EA will, in effect, issue this code and start printing.
There is unfortunately no absolute standard for this code although (CNTL)(I)(G) is the most common. The main thing to realise is that the code is an artefact of the interface card, not the printer.
The Apple IIc is, as stated, an exception. Having no expansion slots it has no interface card as such. It does have a built in printer port and some controlling circuitry that performs the same functions, with one noted exception. There is no built in graphics dump. Thus, there is no way for either CAW or EA to print from an Apple Ilc.
To print from CAW or EA you need; a printer capable of (bit image) graphics, a printer interface card capable of a 'graphics dump' and most importantly, the code that causes the card to perform the graphics dump. If you don't know the code, it should be listed in the documentation for the printer interface card. If that is not available, try the retailer who sold it or the manufacturer of the card. In any case, you should try (CNTL)(I)(G) as it may well work. (Do try these things out on an experimental basis, not three hours into a serious game.)
Strategic Studies Group will endeavour to publish a list in a future issue of Run 5 of known card, code and printer combinations. However, given the sheer volume of product that has appeared over the long history of the machine, we will need your help for this to be ultimately successful. If you have a card, code and printer combination that works, please drop us a short line and let us know. Give as full a description as possible of the equipment. The fruits of your research will be appear in our list in Run 5 and may help others to get the most out of their programs.

PROGRAMMING AND GAME DESIGN

By Roger Keating and his Computer

> Reach for the Stars was designed about three years ago and remains one of my favourite computer games. It has been used on many occassions as a tournament game and is still recognised for the tough opposition to be found in its 54 star system universe.

> Many of the game's features and mechanics have never been exposed so I am putting pen to paper (or fingers to keyboard) to remedy the situation.

GENERAL STRATEGY IN REACH FOR THE STARS

Many times in the last three years I have been accused of cheating in Reach For The Stars. Somehow the computer has access to the random generator; or somehow has its production enhanced! The truth is that all these devices were planned. . . originally.

It became embarrasing during the last weeks of testing to discover that beginner opponents (all the computer players were beginners then) were beating the playtesters.

If the experienced and veteran computer opponents were to achieve their
superiority by artful deception (aka cheating), it appeared there would be no reasonable way for the average (mere) human to beat them.

The solution was to introduce a hate index. Beginners were made mild mannered developers. If a player (human or computer) took a planet from them the beginner would shrug its shoulders and begin again. Veterans, on the other hand, were taught to hate. They hate (in no particular order) anyone who is winning (except themselves!), all human players, anyone else who occupies a planet in the same star system, anyone who is causing aggravation and/or anyone who is close and vulnerable.
Once the veteran player has selected a
victim, it will harass and attack him mercilessly until he is rubbed out or is supplanted by a new opponent with a higher hate index.
Even with these adjustments, beginners were still too tough. They were taught to make mistakes in their production and to overspend on certain items. This finally produced the balance I was looking for.
The only factor that I could not compensate for was the handling of population and veteran players get some assistance with birth control mechanisms to make sure that their planets do not get out of control.

On Production

To evaluate its progress, each computer player checks the number of planets in the following categories

- planets with less than six industries
- planets with more than six but less than 19 industries
- planets with 20 or more industries
- planets that it has conquered
- own planets conquered by other players

In addition to this information the current state of military operations against other players are assessed. Armed with this knowledge, priorities are assigned to production.
Production is performed in two cycles. Developing planets are accounted for first (and have the first refusal of any global RPs available) and are brought up to a survival level. Other planets are taken in whatever order they come.

Once the production needs of a planet have been established, one of each unit type is produced until the needs are met or the RPs exhausted.

On Fleet Operations

Warships are allocated to exploring, protecting planets, harassing other planets and to strike groups. A convenient star system is selected as a form point for the strike group and all ships allocated to this mission are sent there while awaiting the selection of a suitable target system.

The computer player's choice of target system is based on hate indices, estimated vulnerability and industrial status (and for the beginner player a great deal of luck!).

An attack form point is selected within striking distance of the target. If the target has been slated for planetary
conquest, the production system is flagged to manufacture the required space marines. They are also directed to the form-up point. All planets (except developing ones) are instructed to maximize military production and a counter is set which limits the computer to a timetable to carry out the invasion.
If time runs out the attack is aborted and the development phase resumed. A new form point is selected while the warships await the choice of a new target.
When estimated sufficient force has been accumulated at an attack form point, the strike is launched. Usually, it is timed to arrive just prior to a production phase. The decision to strike is announced with the ringing of the attack bells.

Finally, all attack flags are cleared so that while one invasion is underway another can be forming.

At last I get a chance to publish the evidence! In the game played to illustrate the design notes to the second edition of Reach for the Stars, I really did win. There just wasn't room in the manual to publish the final victory screen. So here it is.

THE OPTIONS

Novas

At the end of a turn, the computer scans each planet. If a planet belongs to a player on level 3 technology, then there is a small chance that the star system will become unstable and threaten to go nova.
Each turn, for each star threatening to go nova, there is a 25% chance that the star will revert to normal, a 50% chance that it will continue to threaten and a 25% chance that it will become a black hole. On creating a black hole, all planets in the system are destroyed and any fleets arriving there join them in oblivion.
There is a limit of 5 star systems that can become black holes (we didn't want the entire universe to disintegrate in the course of a long game.

Natural Disasters

There is a small chance every turn that a planet will suffer a reduction in industrial capacity, population or environment. This has proved to be one of the least popular options.

Xenophobes

Originally thought of as 4 pirate fleets that would travel the universe destroying planets, they finally emerged as 4 infestations that are created, move around the universe and eventually die. When one of them infests a star system, access to global RPs is denied and combat in that system becomes deadlier.

Solar Debris Effect

If a task force strikes a gas cloud it stops immediately and begins moving again on the next turn. It pays to scout out the best space lanes between the gas clouds when using this option.

Random Star Map

For those players who really like to keep track of everything this is definitely the option. Star systems are never adjacent to each other which avoids the possibility of multiple combats in a single turn.

Task Force Set-Up

The luck element is enhanced in this option. Very few games last much longer than 40 turns unless some additional global RPs (say 500) are issued at the beginning of the game.

Abstract

Auto Explorer, Move After playing many games of Reach For The Stars this option became essential. I always use it. Some players like to track the movement of every explorer under the idea that it gives them an edge but I would rather concentrate my energy on developing a good economic system and a large fleet as these do a great deal more damage than the knowledge gained from tediously tracking explorers.

Hidden Victory Conditions

When lan and I play we agree not to look at the victory screen during the course of the game. It adds considerably to the excitement, especially in the last few turns when a risky strategy can snatch defeat from certain victory! This is an essential option during tournaments.

Enhanced Computer Players

Each production phase the computer players are given a few additional production points to accelerate their development. With this edge they become most formidable opponents and their defeat demands careful planning and a great deal of luck. I always select this option and can win about 50% of the time against the veterans.

Random Game

I prefer to have a small amount of uncertainty in each game and generally select this option. Production values and movement allowances are varied from the standard figures but not so much as to unbalance the game.

Variable Cost Option

This option allows substantial changes to the basic production and movement values. The game can be heavily biased toward development, conquest or destruction.

Multipliers

This is a little used option that allows each player to enhance certain victory conditions at the expense of others.

It has been my experience that a large number of RFTS players never venture into the options and will only play the traditional game. They are missing out on quite a lot.
Many suggestions, however, on additional features have been forthcoming and the temptation to do another space game has had to be tempered by the work in progress.

QUESTIONS AND ANSWERS

Abstract

Over the past eighteen months or so we have received quite a few queries on various aspects of our games. As a regular feature we intend to answer some of these questions. This first batch deals mostly with Carriers at War and concludes with some player's notes which we hope will be of use to you. We invite you to take advantage of this forum and write to us if there is anything in our games you would like clarification on.

Q. Why does it take a couple of hours to launch some strikes in CAW?

A. Each carrier has a spot number which represents the number of aircraft that can be on deck at any one time. This capacity is specified in the design manual in menu 18 \{Carrier Creation\}. Each point of the number in the design manual represents four aircraft. Planes in excess of the spot number must wait for the decks to be cleared before they themselves can be launched.
Q. How do I launch my seaplanes? Why do I keep getting a Seaplane tender at Sea message?
A. The planes on a tender can only be launched while the tender is anchored, either at a designated anchor point or in port. It is specified in the design kit under menu 9 \{Scenario Briefing\}. If a task group containing a seaplane tender is given an "anchor" order, it will go straight to the nearest anchor point or port, anchor and start searching if a search direction has been specified.
Q. Why can't I launch planes unless there is a sighting? Why can't I launch my carrier fighters at squads that I see attacking my own port?
A. Each strike launched will result in attrition (planes getting lost, bent on takeoff or landing etc) and place the carrier task group in a vulnerable condition while it stooges around waiting for the strike to return. It was never a decision to be taken lightly.

Carrier aircraft flying from carriers were not used to directly defend land targets as there were no Ground Control Interception facilities for them. However, planes flying CAP are capable of intercepting enemy aircraft up to 7 hexes away, depending on the radar value of the carrier.
Q. How do 1 launch a search? How do I launch CAP?
A. Searching and CAP are both done automatically by the computer. The computer will launch search planes when at least one element of the search rosette is turned on and there are planes available. The computer will endeavour to keep one plane outgoing along each activated search arc.
Search planes which detect enemy vessels will attempt to shadow them until they lose contact, their endurance is exhausted or they are shot down. Another plane, if available, will now be allocated to that search arc.
A lot of capital ships carried float planes and the task groups carrying these should always have the search rosette turned on.
Remember, the searching is done as a function of each task group. You will have to decide whether to use the search resources (if any) for each individual Task Group. The computer will use carrier planes, even fighters if there is nothing else, so searching will always be carried out if physically possible. However, strike planes and crews should be conserved as much as possible, so only search those arcs you really need to.

STRATEGIC STUDIES GROUP INVITE YOU TO ENJOY ANOTHER FINE HISTORICAL SIMULATION

 MRORE MBALAERoger Keating Eric Baker

THE AIR WAR OVER ENGLAND AND GERMANY 1939-1945.

EUROPE ABLAZE is a complete game system designed to bring to life the vital struggle in the air which raged over Europe for almost five years. Three major scenarios, selected from the various phases of the war, are presented to simulate the changing fortunes of battle as Britain, at first beleaguered by an overwhelming Luftwaffe, finally becomes the bastion from which American and British bombing forces wreak havoc upon the German war machine.
Each scenario offers up to six command positions per side, any or all of which may be computer controlled. The player takes the roll of C in C (Air Forces) and/or up to five subordinate commands. The result is an entertaining and rewarding experience for either solitaire or group play. Major bombing missions are planned twice per day (daylight ops at midnight, night ops at noon) and require target selection, course plotting, speed and H hour determination and finally squadron allocation. Other operations available to strike aircraft include harassment, raid, and recon missions.
Fighter aircraft perform intercept and patrol (both standing patrols and intruder patrols) ops in response to ground and radar sightings. These ops can be launched at any time.
Targets range from city centres (population, industry, communications and port facilities) to radar stations, airfields and shipping lanes.
The weather routines have been carefully integrated into the game system and such occurrences as storm fronts, ground fog and moonlight are certain to frustrate the would-be mission controller.
Each air commander is blessed (or cursed) with a comprehensive doctrine which may restrict his target selection, limit his escort allocation and/or determine the combat actions of his air formations. Sometimes it's not just the enemy which must be overcome, but also your own higher command.
The depth and detail of this carefully researched simulation is made possible solely through the machine code programming skills of Roger Keating and his unique talent for squeezing out the last ounce of R.A.M. The game features superb hi-res graphics and a very user friendly order structure.
And furthermore... we have provided the creative gamer and historian with a complete game design kit.
This exceptional tool will allow you to create your own scenario variants as well as designing original campaigns. To explain their use, the design routines are illustrated with an entirely new scenario recreating the operations of the US 15th Air Force from Italy in May 1944.

> Available for the Apple II Family and the Commodore 64 for $\$ 50$ at all good software and game retailers or direct from STRATEGIC STUDIES GROUP In the US - 1747 Orleans Ct, Walnut Creek. Ca. 94598 In Oz - 336 Pitt St, Sydney. 2000. (02) 264-7560

CAP is a totally automatic function, and the computer does a very good job of it. Remember all available fighters will be used in emergency CAP if you do see something coming.
Q. Why do I always seem to sink many times the known totals of enemy ships, especially carriers?
A. The whole question of sighting and battle reporting was a matter of great unreliability for both sides. Historical commanders continually received inaccurate and exaggerated reports and so will you. Let us suppose that you receive a sighting report of 4CV, 3BB, 7DD, 1AX. It is entirely possible that there are no CV's there at all. Capital ships, transports, oilers could be and were mistaken for carriers. Let us say that you send a strike and that there are actually two carriers in the group. A typical battle report could well be 4CV sunk. If you attack the same group the next day you get another 4CV sunk report. Obviously incorrect but quite typical.
It would usually take a day or two for the Intelligence Officer to prepare an accurate estimate of a day's operations. Most CAW players will probably have at least a dozen carrier battles. This is four times the number fought by any of the the commanders in the historical scenarios! To have provided players with an edited action report would have been to dispel (for an experienced user) the uncertainty so characteristic of Pacific carrier battles.
Q. What is the current version of CAW and what is your upgrade pollcy?
A. The current version is 1.1 . If this number doesn't appear in the bottom right hand corner of the start-up screen, you can send your disk for replacement to either our American or Australian office. It's not so important for Apple owners but Commodore 64 users may (will) find some problems with the design routines.
Q. What is the current version of $E A$ and what is your upgrade policy?
A. The current version is 1.0 ; i.e. the original release version. Everything seems to be working fine (touch wood).
Q. Are ETA's (in CAW) always correct or can a strike take lohger than the listed ETA.
A. The ETA will be correct with the following exceptions. If the number of planes in a strike exceeds the spot number, then there will be a delay,
depending on the number of planes that you are trying to launch. If the strike is cohesive, then everyone waits for the last squadron to take off. If a strike does not immediately find its target, then it will go looking for it. Obviously, this will add to the flight time.
Q. Why does my score drop to zero if 1 am doing very well in EA?
A. The magic number in Apples and Commodores is 65536 . This is the largest integer than can be addressed without going to a lot of extra trouble and memory. EA calculates VP's in sixteenths, to give us some flexibility when allocating them. Dividing 65536 by 16 gives us 4096. If you happen to exceed this score, it rolls over to 0 and starts again. It is most unlikely that this will happen, and if you ever get that high a score you certainly will have won in any case.

Questions and Answers
 A forum of advice for our customers

Q. I create a scenario in CAW like 'Raid on Ceylon' and then find that I can't access my new scenario. What is going on?
A. You have undoubtedly saved a save game file over your newly created scenario file. As you start to build a scenario you will save your work from time to time. This is put in a file called a 'Creation file'. This file holds all the information needed to start your scenario going. If you start a game of a created scenario, you may want to save it at some stage. There is no problem with this so long as you do not write the saved game file to the same space on the disk that was occupied by your creation file. The save game routines give you complete freedom over which slot on the disk to use. Choose anything except the one currently listed as a 'Creation file'. If you do you will wipe out your scenario and not be able to do anything except restart that one saved game. Since typing in a new scenario represents so much work you should keep a copy on another disk.
Q. I create a squadron of 27 Zeros in CAW. When I go to play the game I find there are 28 of them. Why?
A. It is almost certain you have more than 1012 planes in the scenario. When this happens, the computer handles aircraft in multiples of two. Any odd numbers entered in the creation routines will be adjusted prior to the start of the game.
Note that the originally entered number will appear in the creation routine.
Scenarios involving more than 2024 aircraft will find planes treated in multiples of three. . . and so on up to a maximum of eight.
Q. Please explain the meanings of the beeps, buzzes and burps which Indicate the progress of combat?
A. Air to air combat is recognisable by a brief flicker of the strategic cursor over the battle area and one or more short beeps.
Armour-piercing or high explosive bomb attacks are announced by several long beeps and a distinctive flashing of the strategic cursor over the battle area.
Torpedo attacks are announced by a long beep-burp combination, again with the distinctive flashing of the strategic cursor.
Surface combat between warships is announced by a long seriés of sharp beeps and the flashing of the large ship cursor.
Submarine attacks have the same sound as surface combat but show the flashing torpedo cursor.
On clearing airfields and carriers, squadrons trigger a sharp beep.
This explanation mayn't be all that satisfactory to some of you. Beeps, burps and whatever are hard to describe in words.
What's at fault here is a less than adequate display of combat actions. The optional system of reports featured in EA should have been included in CAW. We just didn't think of it. If we ever bring out a second edition. . .
Q. What actually happens in air-to-air and air-to-surface combat in CAW?
A. You get a long answer to this question!
Let's consider a single squadron of torpedo carrying Betty bombers en route to attack HMS Prince of Wales. On takeoff the squadron is checked to determine

STRATEGIC STUDIES GROUP PROUDLY ANNOUNCES THE RELEASE OF ROGER KEATING AND IAN TROUT'S GREATEST GAMING ACHIEVEMENT . . .

 Carriers at War
'CARRIERS AT WAR' will recreate for you the 5 crucial carrier battles which shaped the course of the Pacific War. Up to six players per side can take the roles of, amongst others, Yamamoto, Ozawa, Nagumo and Mikawa or Nimitz, Macarthur, Halsey and Fietcher. In addition, an introductory scenario simulating the destruction of the US Pacific Fleet at Pearl Harbour will gently introduce new gamers to a satisfying and rewarding experience.
The complex interactions between air and naval operations which characterized this period are talthfully presented in the style only Roger Keating's swift and precise machine coding can reproduce. Driven by an easy to use order menu, the game systems encourage players to concentrate upon the developing conflagration; not upon the game mechanics necessary to implement their strategic decisions.
'CARRIERS AT WAR' is an exacting hisforical simulation, a programming masterplece and, above all, a delight to play. BUT THAT'S NOT ALL . . . Every creative gamer with even a passing interest

In the Pacilic War will appreciate the comprehensive GAME DESIGN KIT which complements the historical scenarios. You can use this kit to create simple or complex variations to the historical scenarios .. . or you can create entirely new scenarios set in any theatre of WWII. At your disposal for each scenario are . . . 夫 an 84 by 72 hex-grid at 20 nautical miles per hex which reproduces an area in excess of 3 million square miles $\star \mathbf{6 3}$ individual aircraft types \star 127 alr squadrons which can accommodate over 4000 aircraft $\star 24$ land bases * 63 ship classes $\star 48$ task groups into which are allocated up to 32 carriers and 215 other ships $\star 2$ land and 4 naval command posifions per side \star detalled weather creation and forecasting routines \star national doctrine and scenario briefing routines * . . . You really can do it yourself. To prove It, and to show how easy it is to use, the design routines are graphically illustrated with an entirely new scenario recreating the Japanese carrier rald on Ceylon, April 1942.

Available for the Apple II Family (64K) and the Commodore 64 for $\$ 50$ at all good software and game retailers or direct from STRATEGIC STUDIES In the US - 1747 Orleans Ct, Walnut Creek. Ca. 94598 In Oz - 336 Pitt St, Sydney. 2000. (02) 264-7560
if any planes suffered damage and have to be recalled. If so, they land and await repair.
During the flight to the target, the squadron is regularly checked to determine if any aircraft have incurred an in-flight mishap (the ever present magneto drop perhaps). Aircraft suffering such misfortune abort and attempt to return to base. The further from home they are, then the more likely they are to end up in the drink. Each aircraft is actually a discrete element and flies individually, hex by hex, back to base. You may have noticed the odd, single aircraft in the landing pattern on the base display. It may well have been a returning aircraft; or a search plane.
Furthermore, during flight the squadron is continually on the lookout for possible targets including, of course, the one they were assigned to. The decision to attack a target of opportunity rather than the assigned target is related to the type of warships present as well as a certain random element.
For the purpose of this example, our Bettys reach the reported target location without incident. Now they begin looking for the target. This search is influenced by the weather, time of day, crew ability and the real target location. And a random element. Every decision made by the computer includes a random element!
Assume our Bettys find the target after a bit of stooging around. There is no CAP present. The Bettys form into air divisions of 3-6 planes each and begin an attack approach. Not all air divisions will necessarily attack in the same five minute time interval; in fact, it is most unlikely that they will.
Each air division is subjected to heavy AA fire from the task group. (The effectiveness of this fire is related to the number of ships present, their heavy AA strengths, the task group admin value, the number of attacking air divisions, weather and time of day.) As a consequence of this fire, the attacking aircraft are placed in one of four categories; destroyed aircraft, damaged aircraft unable to drop their ordnance, damaged aircraft able to complete an attack and undamaged aircraft.
The last two categories of aircraft complete their attack. A target ship is selected and light AA fire is resolved with the light AA value of the target ship being the prime component of the fire. Aircraft are either prevented from making an attack. (destroyed or damaged), harassed or unaffected. Harassed aircraft (which may be damaged) make
their attack at reduced effectiveness while unaffected aircraft attack at full strength.
Once each air division has completed its attack, the survivors are told off and ordered to head for home. They do this individually with disabled aircraft exposed to the same risk of accident as aircraft damaged by mishap.
The presence of combat air patrol (with or without mission escorts) adds another layer of complexity.
The distance from target (up to 7 hexes) at which interception may occur is primarily determined by radar values. Weather and time of day affect pretty well everything so I won't bother mentioning them again.

Questions and Answers A forum of advice for our customers

Once a squadron has been flagged as intercepting an enemy mission in a given five minute time increment, the number of intercepting planes are determined. This is based, among other things, on the size of both forces, pilot experience and the quality of the radar detection.
Intercepting aircraft are allocated to engage the mission escorts or strike aircraft. Fighter aircraft can be destroyed, damaged or unaffected. In either of the last two cases they can be out of amunition in which event they abort, as do damaged aircraft. Surviving fighters are available for combat in subsequent five minute intervals.
Strike aircraft can be destroyed, damaged, harassed or unaffected by the interceptors. Damaged aircraft abort; they do not make strike runs.
Once the air-to-air gauntlet has been run, surviving strike aircraft have to get through the flak as detailed above.
Q. I get strange results in some scenarios I have created involving transport missions. They seem to abort for absolutely no reason whatsoever (i.e. they have not been damaged at all).
A. There is a peculiarity in the way the computer treats nationalities without a carrier. Basically the computer checks on a side to see how many carriers it has left to decide if disaster has befallen and a general withdrawal order should be issued. If it finds zero carriers it is apt to get nervous and issue a run away order. The fact that you started the scenario with zero carriers is not counted. The solution is easy. Design a CV class and one CV. Place them in a Task Group and schedule this Task Group to arrive one or more days after the end of the scenario. The surrogate CV will play no part whatsoever in the game, but the computer will be mollified. Remember, this only should be done for nationalities with no carriers at all.

A Special Note for Commodore Users

There is a small problem with early versions of CAW for the Commodore 64 only. If you do not have the version number 1.1 appearing in the bottom right hand corner of the title screen then you may have a problem in the creation routines. The problem manifests itself as a scrambling of some creation routine displays, (the data itself is unaffected). If you have noticed this and wish it corrected then please send your original disk to the appropriate SSG office for a free replacement. (US residents should use our US office, it will be quicker and cheaper.) Remember, this is for the C-64 only.

SOME PLAYER'S NOTES FOR CARRIERS AT WAR

It's probably easiest to begin these notes with a list of things you shouldn't do.
Do not launch strikes that will return after nightfall. Strikes trying to find a carrier at night will suffer ferocious rates of attrition. The ETA given for each strike can be exceeded if the strike size exceeds the carrier's spot number or if the strike cannot immediately find its target.
Do not launch strikes in lousy weather; they probably won't find anything and again, aircraft losses will be high. Never believe your own battle reports, especially those from carrier pilots (of either side). These reports are merely

Continued on Page 46

Turn your creative talent to cash with our

 SCENARIO DESIGN CONTEST
Two prizes of $\$ 500$ each are to be awarded for the best Carriers at War and Europe Ablaze scenarios submitted to us by June 30th, 1986

There is still plenty of time to enter our Scenario Design Contest. We'd love to hear from you.
There is no restriction as to subject matter, size or anything else. All we require is that you submit your entry (or entries) on a floppy disk together with a typed (or very clearly written) briefing for the scenario.
The judging panel will include Roger Keating and lan Trout, their decision will be final and, as always with this kind of thing, no correspondence will be entered into. . . leastways about our choice of winners.
The winning scenarios will be published in Issue 4 of Run 5 (not Issue 3 as previously advertised).
All entries become the property of Strategic Studies Group Pty Ltd. However, a payment of $\$ 100$ will be made to the author of any scenario selected for publication. This payment is not in addition to the prizes described above.
Please be sure you include your name and address in a legible form.
All submissions must be sent to

> Strategic Studies Group Pty Ltd P.O. box 261, Drummoyne. 2047 AUSTRALIA.
(Overseas entrants are advised to wrap the disk in foil as a precaution against magnetic erasure)

BALANCE OF POWER Geopolitics in the nuclear age

A critical assessment of Chris Crawford's latest game for the Macintosh

Abstract

A few months ago $/$ read, in a national newspaper, some remarks attributed to Chris Crawford which concerned the computer gaming world. Among other things he asserted that all of the world's best computer game designers were American. Don't worry, Chris, I haven't let myself be unduly influenced by your observations in editing this review! The Editor

THE PACKAGE

Balance of Power is professionally presented in a crush-proof album. The cover illustration is attractive if perhaps a little on the dull side.
The author is given due recognition on the front cover. The $3.5^{\prime \prime}$ disk is protected in a sealed plastic sleeve. The 88 page instruction manual hooks into the album by its stiffened end paper.

THE GAME

Balance of Power is, as it says on the cover, a simulation of Geopolitics in the Nuclear Age. As a player you control either the US or the USSR in a global contest for prestige and power.
Each superpower is evaluated for diplomatic prestige which is calculated by summing the effects (positive or negative) of its relationship with each of the sovereign states in the world.
For any particular state, a superpower can seek to improve its relationship with the existing government, usually by giving it aid of some sort. As an alternative to this paternal approach,
hostile or intractable governments can be subverted by the age-old policies of aiding internal enemies and/or sending in the marines.
It should be realized right from the start that as befits a Realpolitik view of the world, both sides are presented as imperial powers in the classic tradition. They are both trying to extend their power and influence over as much of the world as possible. And to do this they will undermine governments or use the big stick without qualms. Perhaps to underline this fact, the first example in the manual is Nicaragua. . . a case we will return to in our own examples.
The world is represented by an exquisitely drawn Mercator projection (as shown in the accompanying illustrations), a splendid example of the potential for enhancing games made possible by Mac's graphics. By
selecting from a menu, the map is redrawn to show the current state of the requested variable.
One of the vital aspects of the game is Spheres of Influence. Each country will fall, to some degree, within the sphere of influence of one or the other superpower. Clear and precise graphics readily display this information.
Double-clicking on any one country brings up a briefing window with detailed information on the type and strength of the government and its opposition, intervention by either superpower (if any), prestige point distribution and diplomatic climate. The amount of information available to the player is staggering though game play revolves around the use of a few key variables.
There are certain basic assumptions built into the game. Every country has an opposition to the current form of
TITLEAUTHOR

- Balance of Power
- Chris Crawford
PUBLISHER
-. Mindscape Inc.=. 3444 Dundee Road.). Northbrook, III. 60062- U.S.A.
FORMAT:
- . single drive.
PRICE: $\$ 50$ (US): $\$ 80$ (AUST)REVIEWED BY: Greg Whiley
government, called an insurgency. An insurgency comes in differing strengths from totally ineffeciual to outright civil war. Superpowers can choose to support either the government or the insurgency; with men, money or both.
There are, however, lots of restrictions to this seeming carte blanche. Consider yourself to be playing the Americans.

A government hostile to you (like Libya) is unlikely to suddenly accept military aid. A friendly government (say France) may still be unwilling to take American troops, as opposed to mere money.
Some governments are so strong that no amount of funding will ever suffice to change their structure. But there are certainly opportunities for you.

Let us say that as a well read person, you decide that Afghanistan would be an ideal place to intervene; civil war is raging, no trouble finding willing opponents to the nasty Russians. Wrong! Afghanistan is firmly within Russia's sphere of influence. They have a large amount of face at stake as well as money and troops committed to supporting the current government. They would be greatly peeved if large quantities of American weapons started reaching the Mujahadeen, let alone if the RDF swept across the border from Pakistan.
So let them talk you say; we'll send the rebels some SAMs (handy for hitting helicopters). The first response is a private word from the Russians. They are not happy. At this point you can back down and nobody else will know about it. But you decide to hang in there.
The Russians go public. "The USSR deplores the actions of CIA financed criminals against the legitimate government of the Afghan peoples" or some such. Now the whole world is watching as you and the USSR go head to head in a diplomatic showdown.
Prestige points are involved and the person who backs down will lose them, as well as some respect from the world community. The thing escalates, more points at stake and increasing levels of military involvement as superpower forces get put on higher degrees of readiness.
Eventually, if neither side breaks down, nuclear war ensues and the world is destroyed. The game is at some pains to point out that if this happens you have lost. There is no such thing as a draw when you have been annihilated!
So what can you do? Let us return to Nicaragua, a government hostile to you which has been foolish enough to be located in Central America. This is your backyard! The Russians are unlikely to interfere and if they did you should be able to bluff them out. Unlike Afghanistan, Central America is your sphere of influence and the computer knows this as well as you do.
So you can give the Contras as much money as they want and if you have troops in a neighbouring country (Honduras would do nicely) you can use them to intervene alongside the Contras. If the government falls, it will be replaced by one that is (probably) more friendly and your prestige will go up accordingly.
There are four levels of difficulty; from

beginner up to the aptly named nightmare level. Each level introduces more methods of projecting your power, such as coup-d'etat, Finlandization, and diplomatic pressure.
Each higher level is characterized by the decreasing validity of political advice received from the State Department (which is a great help at the beginner levels), until you are on your own in assessing the situation.
At the end of each year you can object to any Soviet actions and they get an
equal chance to object to yours. Since the game lasts eight years, there are an awful lot of potential crises to survive, each one requiring some fine judgement. A most important feature in the game is the calibre of play offered by the computer. It is aggressive, determined and clever; forever trying some new sneaky trick to stir up trouble somewhere. Heaven help the unwary wretch who doesn't keep an eye on everything.
It is hard to capture the essence of this
game in a few words. Like all good games the rules are simple, but the choices are difficult. At the highest levels, surviving is a real tightrope act; which, in a nuclear world, means working without a net.
The game is not a complete, or perfect, simulation. Nor does it claim to be. A number of the world's smaller countries have disappeared to make things easier. Moreover, your authority as President is unhindered by any domestic considerations; valid enough, I suppose, for the USSR, but hardly an accurate assessment of US Presidential relations with Congress. Some unthinkables, such as cutting aid to Israel, are quite possible.
International trade has been deliberately omitted from the list of factors affecting world politics. In the Macintosh environment, 128 K is not a lot to play with and I suspect the underlying reason for the omission rests with the mundane problem of memory constraint. (How well we appreciate THAT problem. Ed.)
This is a pity for perhaps the greatest advantage the US enjoys in the pursuit of its global policies is the enormous power stemming from her huge industrial base.
In play balance terms, it may well be that this US disadvantage is offset by an ever docile and uncritical legislature.
The decision making environment of the Soviet President is quite different to that in which the US President must operate. In Balance of Power, the environments are the same.

IN SUMMARY

The above criticisms are simply observations. It is much easier to notice faults and omissions in a game you have enjoyed and expect to play again.
In the end, Balance of Power is quite an achievement. The game contains an astounding amount of detail without ever allowing the luxury of certainty. Your only responsibility as a player is decision making. The information to base these decisions on is readily available.
Anyone with an interest in world affairs and tough, demanding games should definitely get hold of this. Be warned, however. It is not a simplistic game to play. Inattentive or part-time Presidents are headed for early oblivion.

CARTIERS AT WAR TECHNJCAL DAJA ON SHIP CLASSES PART TWO US Warships in Service (1943-45) Commonwealth Warships in Service (1939-1945)

With the exception of a small number of Dutch warships, the technical data so far presented in this series covers all of the warships (of destroyer escort size or larger) which saw action in the Pacific Theatre.

This second installment of our ship data feature completes the roster for United States warships as well as listing British and other Commonwealth warships. Surface vessels smaller than destroyer escorts are not included.
Ships not completed in time to take part in the war have, for the most part, been excluded from this directory. A few exceptions however, specifically the more interesting capital ships, have slipped through.
Part One appeared in our January '86 issue and can be ordered from our Australian or US office while stocks last.
Our next issue will contain the final chapter. It will provide the specifications for German, Italian, French, Russian and selected minor country navies as well as some general data for support vessels and auxilliaries of all nationalities.
To make use of the information, locate the required ship from the listing and note the ship class to which it belongs. Now find this ship class from the appropriate table and enter these values either directly into your computer or (recommended) onto a blank design sheet.
Note that the pennant numbers for CV's are included even though there is enough
space in the carrier creation routine to enter most names in full.
The ship class tables also include the specialized data needed to create aircraft carriers and submarines. This information appears in the top row, in brackets, beside the number of ships in the class. For aircraft carriers, air capacity and spot number are read as (A, S). For submarines, depth and speed are read as (D,S).
We can illustrate the procedure with some examples. To design a scenario on the 1941 battles in the Mediterranean you will require, among others, both the Queen Elizabeth and theArk Royal. Consult the Commonwealth ship listings (under battleships) and you'll find the pennant number of the Queen Elizabeth is BB 00 and the ship class is BB 1912. Locate BB 1912 in the ship class tables and enter the data found there onto a blank design sheet.
The Ark Royal is an aircraft carrier belonging to ship class CV 1935. The bracketed numbers in the top row of the class data are the carrier's air capacity and spot number, namely $(60,4)$ These two values are needed for the carrier creation routine. Ark Royal's pennant number (CV 91) is provided for historical interest only.

The pennant numbers of Commonwealth warships were not, unfortunately, organized in the orderly, sequential fashion adopted by the United States Navy. All warships were awarded a 2 (sometimes 3) digit number with the pennants of smaller ships and those of colonial navies being preceded by a single letter of the alphabet (Flag Superior). Furthermore, these flags underwent one, sometimes two, changes in the course of the war.
The pennant numbers given to Commonwealth ships in this directory are those held in September 1939 or the date of commission for vessels entering service during the war.
Nineteen bulk transports/oil tankers were converted into merchant aircraft carriers (CVM 1942) from 1942 to early 1943. Only their air crew were naval personnel and they were otherwise commanded and manned by merchant marine seamen. On this account they did not receive pennants. With the arrival of purpose built escort carriers in the latter part of the war, these ships were phased out of service. If you need to use any of them, assign a scratch pennant in the range CVM 1-19.
Some 56 armed merchant cruisers were commissioned in the war years. A representative selection (AMC misc) of them have been included in this directory.
The 50 destroyer escorts of class DE 1918 are those provided on lend-lease by the United States in exchange for port facilities in the West Indies.

Between 1940 and. 1942, British submarines were issued P pennant numbers without names. This practice was discontinued in 1943 primarily because of the confusion in ship recognition. Names are much easier to remember, and relate to, than numbers. The submarines without names are those sunk in the interim.
Royal Naval vessels were, in general, better sea boats than their USN counterparts being principally designed for the rigours of the Atlantic rather than the placid waters of the Pacific.
Anti-aircraft armament in British ships improved rapidly throughout the war although re-equipment proceeded at a slower pace than in the USN, primarily because of a chronic shortage of modern weapons. AA armament in capital ships increased by some 50\% per year between 1942 and 1945, while the armament of smaller ships averaged only a $10-25 \%$ increase for the same periods. Many older ships received nothing at all.

DE 1942
De 1943 A 527.530

DE 51 Buckley
DE 53 Charles lawrence
DE 54 A Daniel T Grifin
DE 56 Donnell
DE 57 Fogg
DE 59 Foss
DE 60 Ganiner
DF 62 George W Ingram
DE 63 Ira Jeffery
DE 65 Lee Fox
DE. 66. Amesbury
DE 68-70, 153-161,
198-223, 575-578,
633.644, 665.667,

675-683. 693-705,
789.800

DE 19438
DE 224 Rudderow
DE 225 Day
DE 230 Chatiee
DE 231 Hodges
DE 339 John c Butler
DE 340 O Flaherty
DE 341 Raymond
DE 342 Richard Seusens
DE 343 Aber cromble
DE 344 Oberrender
DE 345-379, 402.424,
438-452. 508.510.
531 554. 579-589.
684-686, 706.709
DE 19430
DE 99 Cannon
DE 100 Christopher
DE 101 Alger
DE 102 Thomas
DE 103 Bostwick
DE 104 Breeman
DE 105 Burrows
DE 112 Carter
DE 113 Clarence LEvans.
DE 129 Edsall
DE 130-152, 162-197.
238-255, 316-338.
382.401

NOTES TO SHIP LISTS

1.There was a bit of a mess-up in the ship lists of US submarines in Part 1. The pennant numbers identified with an asterisk (*) were given incorrect names. The correct names appear herewith.
2. Ships with a bracketed letter after their name correspond to the similarly identified data in the ship class tables. For example, the light cruiser Bonaventure (CL 31) has a heavy AA rating of 8 (instead of 10) and a secondary armament of 4 (instead of 5).

UNITED STATES
 SUBMAARINES

IIS 256 Hake
" SS 25 , Harder
"SS 258 Hoe
"SS 259 Jack
*SS 260 Lapon
" SS 26 Mingo
\#SS 262 Muskallunge
ths 263 Padde
SS 264 Pargo
\#SS 265 Peto
*SS 266 Pogy
\#SS. 267 Pompon
"SS 268 Puffer
t SS 269 Rasher
SS 270 Raton
SS 271. Ray
SS 272 Redin
SS 273 Robalo
SS 274 Rock
\#SS 275 Runner
" SS 27. Sawfish
\#SS 277 Scamp
"SS 278 Scorplon
*SS 279 Snook
\#SS 280 Steelhead
\#SS 281 Sunfish
\#SS 282 Tunny
\#SS 283 Tinosa
SS 284 Tullibee
4. SS 285 Balao

SS 286 Billish
"SS 287 Bowfin
" SS 288 Cabrilla.
SS 289 Capelin
\#SS 290 Cisco
SS 291 Crevalle
SS 292 Devilfish
SS 293 Dragonet
SS 294 Escolar
ss 295 Hackleback.
SS 296 Lancetfish
SS 297 Ling.
SS 298 LIontish
SS. 299 Manta.
SS 300 Moray
SS 301 Roncador
SS 302 Sabalo
SS 303 Sabletish
SS 304 Seahorse
SS 305 Skate
SS 306 Tang
SS 307-334, 361,374.
381414 : 417 , 422

COMMONWEALTM AlRGRAFT CARRIERS

CV 1922
CV 1924
CV 1935
CV 1937A

CV 1937B
CV 1939
CVL1913
CVL1914
CVL1918
CVL1939
CVL1942

CVE1938A
CVE1938B
CVE1938C
CVE1939

CVE1941A

CVE1942A
CVE1942B
CVE1942B
CVE15 Vindex
CVE01 Ameer
CVE03 Ranee
CVE07 Patroller
CVE09 Trumpeter
CVE10 Rajah
CVE19 Queen
CVE21 Shah
CVE23 Premier
CVE 24 Tracker
CVE26 silinger
CVE31 Arbiter
CVE38 Begum
CVE40 Searcher
CVEA2 Empress
CVE48 Thane
CVE51 Atheling
CVE55 Smiter
CVE62 Khedive
CVE70 Ravager
CVE72 Ruler
CVE77 Nabob
CVE79 Puncher
CVE82 Reaper
CVE85 Trouncer
CVE90 Speaker
CVE98 Emperor
CVM1942

Mackendrick, E. MacRae,
E. MacAndrew, E. MacColl,
E. MacDermott, E. MacCabe
E. MacCallum, E. Mackay,

EMacMahon
Adula. Alexia, Amastra, Ancylus, Gadila, Macoma,
Miralda, Acavus,
Rapana

COMMONMEALTH
BATTLESHIPS

BB 1912.		BB	00	Q. Elizabeth (b)
		B8.	01.	Malaya
		BB	02.	Vallant (b)
		BB.	03.	Warspite (a)
		BB	04.	Barham
	1913	BB	05	Royal Sovereign
		BB	06	Revenge
		BB	07.	Ramilles
		BB	08	Royal Oak (a)
		BB	09	Resolution
	1922	BB	28.	Nelson
		BB	29	Rodney
	1937	BB	17.	Duke of York
		BB	32	Howe
		BB	41	King George V
		BB	53	Prince of Wales
		BB	79	Anson
	1941	BB	23	Vanguard
	1915	BC.	34	Repulse (a)
		BC.	72	Renown
	1916	BC	51.	Hood

CA. 1916	CA 181	Frobisher (b)
	CA 186	Hawkins
	CA 198	Effingham (a)
CA 1924	CA. 133	Canberra (ad)
	CA 54	Kent
	CA 55	Suffolk (d)
	CA 56	Cornwall
	CA 57	Cumberland (d)
	CA 65	Berwick
	CA. 184	Australia (bcd)
CA 1926	CA. 39	Devonshire
	CA. 69	London
	CA 73	Shropshire
	CA 96	Sussex
CA 1927A	CA 90	York
CA 1927B	CA 40	Dorsetshire
	CA 78	Norfolk
CA 1928	CA 68	Exeter

COMMIONMVEALAMAAM

AMC misc		Alaunia Patroclus Forfar Rajputana Jervis Bay Laconia Hector Voltalre Comorin Laurentic California Transylvania Asturias Alcantara Salopian Westralia

COMMONWEALTM
 LIGHT GRUISERS

	1912	CL 147	Adelaide
	1916A	CL 153	Caledon
		CL. 160	Caradoc
		CL 161	Calypso
	1916B	CL 141	Curacoa (a)
		CL. 142	Curlew (a)
		CL 143	Coventry (a)
		C. 158	Cardiff
		CL. 159	Ceres
CL	19166	CL. 130	Despatch
		CL 144	Danae
		Cl 145	Dauntless
		CL 146	Dragon
		Cl 174	Delhi
		CL 192	Diomede
		CL 193	Dunedin
		CL 199	Durban
CL	1917	CL 167	Carlisle (a)
		CL 182	Calcutta (a)
		CL. 187	Cairo (a)
		CL 188	Capetown
		CL 189	Colombo
	1918	CL 152	Enterprise
		CL 166	Emerald
	1931	CL 20	Neptune
		$\mathrm{Cl}, 22$	Ajax
		CL 70	Achilles (a)
		CL 75	Leander.
		CL 85	Orion
CL	1933A	CL 12	Aurora (ac)
		CL 26	Arethusa
		CL. 71	Galatea
		CL 97	Penelope (ab)
	1933B	CL 129	Perth
		CLL 148	Sydney
		CL. 163	Hobart
CL	1934	CL 19	Birmingham
		CL 21	Glasgow
		CL .24	Sheifield
		CL 76	Newcastle
		CL. 83	Southampton
CL	1936A	CL 11.	Liverpool
		CL. 15	Manchester
		CL. 62	Gloucester
Cl .	1936B	CL. 16	Edinburgh
		CL 35	Belfast
	1937	CL 31	Bonaventure (a)
		CL . 33	Cleopatra
		CL 37	Dido (a)
		CL. 42	Euryalus
		CL 43	Phoebe (a)
		CL 61	Argonaut
		CL 74	Hermione
		CL 82	Sirius
		CL 88	Charybdis (a)
		CL. 93	Naiad
		CL. 98	Scylla (a)
CL .	1938	CL. 14	Kenya (b)
		CL 30	Ceylon (a)
		CL 44	Jamaica
		CL. 46	Trinidad
		CL 48	Gambia
		Cl 52	Bermuda
		CL 58	Fij) (b)
		CL 59	Newfoundland (a)
		CL. 60	Nigeria
		CL. 66	Uganda (a)
		CL. 80	Mauritius
	1939	CL. 63	Bellona
		CL 89	Royalist
		CL 95	Spartan

DD 1917
DD D22 Watethen
DD D30 Whirlwind
DD D31 Voyager
DD D43 Wessex
DD D53 Venetia.
DD D68 Vampire
DD D69 Vendetta
DD D88 Wren
DD D96 Worceste
DD H88 Wakeful
DD D38 Ambuscad

DD 1924 / DD D D38 Ambuscade
DD D39 Amazon
DD 1928 / DD D06 Kleth
DD D59 Skeena
DD D65 Codrington (a)
DD D79 Saguenay
DD H09 Acasta
DD H1 . Basilisk
DD H12 Achates
DD H14 Active
DD H30 Beagle
DD H36 Antelope
DD H40 Anthony
DD H41 Ardent
DD H42 Arrow
DD H45 Acheron
DD H47 Blanche
DD H65 Boadicea
DD H77 Boreas
DD H80 Brazen
DD H84 Brilliant
DD H91 Bulldog
DD 1930 \# DD D18 Assinboine
DD D99 Duncan
DD HOO Restigouche
DD H07 Defender
DD H16 Daring
DD H22 Diamond
DD H38 Delight
DD H48 Fraser
DD H49 Diana
DD H53 Dainty
DD H60 Ottawa
DD H64 Duchess
DD H75 Decoy
DD H83 St Laurent
DD H02 Exmouth (a)
DD H08 Eclipse
DD H10 Encounter
DD H15 Esk
DD H17 Escapade
DD H23 Echo
DD H27 Electra
DD H61 Express
DD H62 Faulknor (a)
DD H66 Escort
DD H67 Fearless
DD H68 Foresight
DD H69 Foxhound
DD H70 Fortune
DD H74 Forester
DD H76 Fury
DD H78 Fame
DD 179 Firedrake
DD 1934

(

UNITED STATES SHIP CLASSES－A CARRRRR AT WAR DESIGN FEATURE

NUMBER IN CLASS	\＃	$15(98,9)$	3（127，11）	9（45，5）．	44（27，2）	4（33，3）	4	9	8	24，\％	2	176
SHIP CLASS NAME	［8］	CV 1942	CVB1945	CVL1942	CVE1943	CVE1944	BB 1942	CA 1942	CLA1941	CL 1941	BC 1941	OD 1942
ALLIED	Y／N	Y	Y		Y	Y \times ，	Y	，\％Y ，区	Y	，Y Y ，${ }^{\text {a }}$	Y	，Y \％
SEAPLANE	Y／N	N	N	＜\times N	N	N	N	N	N	N	N	\cdots
SHIP TYPE	0.4	0 \％	0		0	0 ，\％	1	\％	2	$2 * *$ ，	1	2
MAXIMUM SPEED	0.45	33	33	32，模	19	19，ャ	33	$\checkmark 33$	33	$33 \times \sim$ ，	33	35
DISPLACEMENT	0．31	14	24		4	9	23	7.	3	\because ， 6 ，	14	1
HEAVY AA	0．31	12	18	，， 0 O	2	$2 * *$	20	＊ 12	16	$\cdots, 12 \times$	12	5
LIGHT AA	0.31	14.	29	$\cdots, 12$	4	12	28	\because	8		19	4
ARMOUR	0－15	4.	8	\because,	0	0 \％	12	6，，，\％	4	$\because, ~ 5$ ，	9	1
PRIMARY GUNS	0－15	0	0	$0 \times \sim$	0	\cdots	9	9．1．	0	\＄$\times 1 \times$	9	0
SECONDARY GUNS	0－15	6.	0	，, 0 O	1	1	10	6，\％	8	$\because 15$	6	2
TORPEDOTUBES	0－15	0	0	0 ，	0	0	0		8		0	$\because 10$
VULNERABILITY	0．7	2，\％\times ，	4	$2 \times \sim$ ，	2	3	7	6＊＊	4	$\checkmark,+5$	5	$\geqslant \%$ 5
ANTI－SUBMARINE	0－7	0.	0	0	0	0	0	$0, \ldots$	0	$0, *$	0	3
TORPEDO LOADS	0－3	$0{ }_{2}$	0	， 0 ，	0	$0 \times \sim$	0	O～，＋	1	0	0	，\％ 1

NUMBER IN CLASS	\＃	43.	67	102	128	130	171（6，5）
SHIP CLASS NAME	［8］	DD1943	DE 1942	DE 1943A	DE 1943B	DE 1943C．	SS 1941
ALLIED	Y／N	Y	Y	Y	Y	Y	Y
SEAPLANE	Y／N	N ${ }^{\text {，}}$ ，	N	N	N	$\mathrm{N} \approx$ ，${ }_{\text {a }}$	N
SHIP TYPE	0－4	2，\％	2	\％\times ， 2	2	$2 \geqslant *$ ，	3
MAXIMUM SPEED	0－45	37×8	20		23	$20 *$ ，	21
DISPLACEMENT	0.31		1	1	1	1＊＊＊＊	1
HEAVY AA	0－31	6．\times ，	2	2	2	2 ，${ }^{\text {a }}$	0
LIGHT AA	0－31	5	2	2	3	2 ，＂\times ，	1
ARMOUR	0－15	0 ，＋，，	0	0	0	0 ，＂a	0
PRIMARY GUNS	0－15	0，\％\times ，	0	O	0	0 ，${ }^{\text {a }}$ ，	0
SECONDARY GUNS	0－15	3	0	0＊＊	1	0	1
TORPEDOTUBES	$0-15$	10×2	0	，＋ 2 ，＊\times ，	3	3 ，\sim_{*} ，	10
VULNERABILITY	0－7	4，\％\quad ，	3	3.	3	3，＊＊＊	5
ANTI－SUBMARINE	0.7	4	5	6＊＊＊＊	6	6，＊＊＊＊	0
TORPEDOLOADS	0－3	1	0	，\％$\times 1$	1	1，\％	2

NOTES TO US SHIP CLASSES

1．A complete list of the pennant numbers of US destroyer escorts and submarines is provided；however，only a repre－ sentative selection from each class have been named．
2．The Midway class carriers（CVB 1945） had a normal air capacity of just on 140 aircraft． 127 is the maximum value the creation routine will accept．

COMMONWEALTH SHIP CLASSES－A GARRUERS AT WAR DESIGN FEATURE

NUMBER IN CLASS	\＃	（136，3）．	2（48，3）	1 6 （60，4）	3（33，3）	$1(45,4)$	2（60，5）	$1(21,2)$	1（20，2）	，1（20，2）	1 $(35,2)$	4（42，3）
SHIP CLASS NAME	［8］	CV 1922	CV 1924	CV 1935	CV 1937A	CV 19378	CV 1939	CVL1913．	CVL1914	CVL1918	CVL1939	CVL1942
ALLIED	Y／N	Y	Y	，＋，Y	Y	，＋，Y \％，＂，	Y	，＜Y \％	Y	，, ，Y Y ， ，	Y	，\％Y
SEAPLANE	Y／N	$\mathrm{N}, \ldots, 4$	N	N	N		N	N	N	N, \ldots	N	\cdots
SHIP TYPE	0－4	0＊＊＊	0	，\％ 0 ，\％	0	，＋ 0 ，	0	，ャ 0 ，	0	，\％ 0 ，	0	\％$\sim_{0} 0$
MAXIMUM SPEED	0.45	$31 \times *$	31	31	31	，$\times 31$	32	24	20	25	24	25
DISPLACEMENT	0．31	11，\％	11	11.	12	，12，	13	，，，11，	6	5．＂，＊＊	8	7.
HEAVY AA	0－31	$\cdots, 12 * * *$	16	，＜ 16	16	$\because \geqslant \% 16$	16	，＜ 4	6	3，\％	8	0
LIGHT AA	0.31	3，\gtrless^{*} ，	3	4，\％	6	6,4	6	2，＊，＊	1	$2, * *$	6	11.
ARMOUR	0－15	3．ar＊＊	3	5 \％\＆＊	5	5．ar	5	5＊＊＊＊＊	0	3＊＊＊＊＊	0	0
PRIMARY GUNS	0－15	$0, \gtrless$ ，	0	》，＜0，＜＜＜	0		0	，， 0 O	0	，，00\％\times ，	0	， 0
SECONDARY GUNS	0.15	0，	0	0\％	0	O，	0	，12，	0	$\geqslant 4$	0	，
TORPEDO TUBES	0.15	$0 \times \sim$	0	O\％	0	0 －\times ，	0		0	0,	0	0
VULNERABILITY	0－7	2，\＆\ll	3	4，	5	『， 4	6	3，\sim_{1} ，	2	4，\％\times ，	4	5
ANTI－SUBMARINE	0.7		0	0	0	＂	0	0，	0	0	0	0
TORPEDOLOADS	0.3	$0, *$	0	0 ，	0	$0 \times \sim$	0	$0 \times$	0	0	0	0

NUMBER IN CLASS	\＃	1（6，1）	1（12，1）	1（16，2）	3（15，2）	$8(24,2)$ ，	1（18，2）	2（18，2）．	26（24，2）	19（4，${ }^{\text {a }}$	5	5
SHIP CLASS NAME	［8］	CVE1938A．	CVE1938B	CVE1938C	CVE1939	CVE1941A	CVE1941B	CVE1942A	CVE1942B	CVM1942	BB 1912	BB 1913
ALLIED	Y／N		Y	，\％，Y	Y	Y	Y	\％\quad ， Y ，	Y	Y	Y	Y
SEAPLANE	Y／N	N	N	N $\geqslant, \%$	N	N	N	N	N	N	Y	N
SHIP TYPE	0－4	0	0	0	0	$\geqslant *$ \％	0	0	0	，	1	，
MAXIMUM SPEED	0.45	15	17	17	17	18.	17	16 ，	18	12	24	22
DISPLACEMENT	0．31	4	9	5.	6	6 \％\times ，	6	6，\％	6	3	15	14
HEAVY AA	0．31	2	4	3.	3	2，\％	2	$2, \times$ ，	2	\％\times ， 1	8（10a，20b）	8
LIGHT AA	0－31	2	4	2	2	5.	6	6.	8	2	2（4a，6b）	2
ARMOUR	0－15	0＊＊＊＊	0		0	0	0	0	0	0	13	\％$\times 13$
PRIMARY GUNS	0－15	0	0	0	0	0	0	0 ，	0	0	8	8
SECONDARY GUNS	0－15	0	0	，\times ， 0 ，	0	0	0	0 ，	1	0	14（8a，0b）	12
TORPEDO TUBES	0．15	$0 \geqslant \%$ ，	0	$\geqslant \%$ 0	0	0	0	0	0	$\because 2$	0	O（4a）
VULNERABILITY	0－7	2，\sim_{1} ，	2	2	2	3	2	2，\％	1	1，\％\times ，	4（5a，6b）	5（4a）
ANTI－SUBMARINE	0－7	0	0	0	0	0	0	，\％ 80	0	0	0	\％ 0
TORPEDO LOADS	0.3	0 ，	0	， 0 O\％	0	，\％ 0 ，	0		0	，\％0 \％，，	0	$0(3 \mathrm{a})$

COMMONWEALTH SHIP CLASSES (CONT.)

NUMBERIN CLASS	\#	2	5	4	2	1.	3	7.	4	4	2	1
SHIP CLASS NAME	[8]	BB 1922	BB 1937	BB 1941	BC 1915	BC 11916	CA 1916	CA 1924	CA 1926	CA. 1927A	CA 1927B	CA 1928
ALLIED	Y/N	Y	Y	Y , \%	Y	Y	Y	Y	Y	Y	Y	Y
SEAPLANE	Y/N	Y \sim_{*}	Y	N	Y	N	N	Y(Na) \%	Y	Y	Y	Y
SHIP TYPE	0-4	4	1	4	1	1	1(2a)	1	1	4	1	4
MAXIMUM SPEED	0.45	23	28	30.	31	31.	30	$32 \times * *$	32	32	32	32
DISPLACEMENT	0.31	17.	17	20	14(16a)	18	5	6.	6	, \%, 4	6	4
HEAVY AA	0.31	6.	16	16	20(6a)	8	4(5b)	8	8	4.	8	4
LIGHT AA	0.31	3	4	19	3(2a)	5.".	O(2b)	2 4 d)	0	1.	2	0
ARMOUR	0-15	14	15	, 14	9(7a)	12	3	$5(4 \mathrm{c}) \times$	4	4	4	4.
PRIMARY GUNS	0-15	9	10	8,	6	8*	7(0a,5b)	8	8	6.	8	6
SECONDARY GUNS	0-15	12	8	8	10(12a)	6 , ${ }^{\text {a }}$,	0(9a)	4.	4	2	4	2
TORPEDOTUBES	0-15	2	0	$0, \ldots$,	8	4	6(4a)	$0(8 \mathrm{~b})$	8	6.	8	6.
VULNERABILITY	0-7	6,	7	7, "	4(5a)	4	3(4a)	4	5	5 , ",	6	5
ANTI-SUBMARINE	0.7	0 ,	0	0	0	0	0	0, \% , ,	0	0	0	0
TORPEDOLOADS	0-3	3	0	0, \%	3	3	2	O(2b)	2	2	2	2

NUMBER IN CLASS	\#	$56,4$.	1	3.	5	8	5	2	5	4	3	5
SHIP CLASS NAME	[8]	AMC misc	CL 1912	CL 1916A.	CL 1916 B	CL 19160.	CL 1917	CL. 1918 .	CL 1931	CL 1933 A .	CL 1933B	C4.1934
ALLIED	Y/N	Y	Y	Y*	Y	Y ${ }^{\text {a }}$,	Y	Y	Y	Y	Y	Y
SEAPLANE	Y/N	N	N	N	N	$\mathrm{N},{ }_{\text {\% }}$	N	Y	Y	$Y(\mathrm{Nc})$	Y	Y
SHIP TYPE	0.4	4	2	2	2	2, **	2	2	2	\% $\times 2$	2	2
MAXIMUM SPEED	0.45	14.18,	24	, 29	29	29, \times,	29	33.*.	33	32	33	32
DISPLACEMENT	0.31	4,10	2	2	2	2	2	4	4	3.	4	5
HEAVY AA	0.31	0-2	3	1	1(8a)	3	1(8a)	5****	8(4a)	4(8a)	4	8
LIGHT AA	0.31	12	0	1	1	4	2	2	1	1(0b)	1	2
ARMOUR	0-15	0	3	3.	3	3	3	3	4	2	4	5
PRIMARY GUNS	0.15	0	0	0	0	0	0	0	0	0	0	0
SECONDARY GUNS	0.15	4.9	8	5	5(4a)	6.	5(4a)	7.	8	6.	8	12
TORPEDOTUBES	0-15	0.4	0	8	8(0a)	12	8(0a)	15	8	6.	8	6
VULNERABILITY	0.7	, 1	3	3.	3(4a)		3(4a)	4	5	5 , \times,	6	5.
ANTI-SUBMARINE	0.7	0 ,	0	0	0	0	0	0	0	0, \%	0	0
TORPEDO LOADS	0-3	0.1	0	2	2(0a)	1, \%	2(0a)	1, \%	2	2, \%	2	2

NUMBER IN CLASS	\#	3.	2	4	11	5	2	10	2	20	14	18
SHIP CLASS NAME	[8]	CL 1936A.	CL 1936B	CL. 1937\%	CL 1938	CL1939	CL 1941	DD 1917	DD 1924	DD 1928	DD 1930	DD 1933 .
ALLIED	Y/N	Y	Y	, Y \% \& \&	Y		Y	Y ${ }^{\text {a }}$,	Y	Y	Y	Y
SEAPLANE	Y/N	Y	Y	N	$\mathrm{Y}(\mathrm{Nb})$	N****	N	, $\mathrm{N}^{\text {, }}$, \%	N	N	N	N
SHIP TYPE	0-4	2	2	2, \% \%	2	2, \%	2	2, \%	2	, \% 2 2, \%	2	2
MAXIMUM SPEED	0.45	32 , * *	33	32, \%	32	32	32	34**	37	$\because \times 35$	36	$36(37 a)$)
DISPLACEMENT	0.31	5. , \%	6	3. ${ }^{\text {a }}$,	4	3.	5	1, \%	1	1	1	1.
HEAVY AA	0.31	8\% \% \times,	12	, 10(8a) , ,	8	, , 8, \%	10	\bigcirc	0	, , \% 0 , \% , \%	1	\% \times O
LIGHT AA	0.31	2	3	《 $\times 1$,	3(2a)	2, \%	4	0 , \%	1	, \% 11	1	1.
ARMOUR	0-15	5.	5	$\cdots 3$	4	3 \geqslant, \times,	4	$0 \% \times$	0	0	0	0
PRIMARY GUNS	0-15	0	0	, , \% 0, \%	0	0, \%	0	0.	0	0	0	0
SECONDARY GUNS	0-15	12,	12	5(4a) ,	9(12a)	4***	9	2	2	2(3a)	2	2(3a)
TORPEDOTUBES	0-15	6, + \times,	6	6. ${ }^{\text {a }}$,	6		6	4	6	8,	8	8.
VULNERABILITY	0-7	2	6	5	6		6	3.	4	4, \%	4	\$
ANTI-SUBMARINE	0-7	0	0	0,	0	0,	0	1	1	1.	1	1.
TORPEDOLOADS	$0-3$	2	2	2%	2	, ", 2 , \times,	2	ॠ,	1	, \% 1 ,	1	1.

NUMBERINCLASS	\#	27.	27	24	16	16	16	40	16	9.	12	44
SHIP CLASS NAME	[8]	DD 1934	DD 1936	DD 1937	DD 1938	DD 1939	DD 1940	DD 1941 \%	DD 1942A	DD 19428.	DE 1916	DE 1917
ALLIED	Y/N	, Y/.	Y	, Y/.	Y	Y	Y	Y	Y	Y.	Y	Y ${ }^{\text {V.a. }}$
SEAPLANE	Y/N	N	N	N	N	N	N	N	N	N	N	N
SHIP TYPE	0.4	2	2	2	2	2	2	2	2	2	2	2
MAXIMUM SPEED	0.45	37	36	36	36	37	37	37.	37	36	36	34
DISPLACEMENT	0.31	1	1	1	1	1	1	4	1	1	0	1
HEAVY AA	0.31	0	8(6a)	6	6(8a)	4 or 5	4	4	4	4	1	1(4a)
LIGHT AA	0.31	1.	1	2	2	1.2.	2	2	2	3.	1(0a)	0 (1a)
ARMOUR	0-15	0.	0	0	0	0	0	0	0	0	0	0
PRIMARY GUNS	0-15	0	0	0	0	0	0	0	0	0	0	0
SECONDARY GUNS	0-15	$2(3 \mathrm{a})$	4(3a)	3.	3(0a)	0	2	2	2	2	1(2a)	$2(0 \mathrm{a})$
TORPEDO TUBES	0-15	$8(10 \mathrm{~b})$.	4	10	8	8 or 4	8	8	8	8.	0 (4a)	3(0a)
VULNERABILITY	0.7	5.3.	5	5	6	5,	6	6.	7	7.	3	$3(4 a)$,
ANTI-SUBMARINE	0.7	2.	2	3.	3(5a)	4	4	5.	5	4.	3(1a)	3(0a)
TORPEDOLOADS	0.3	1.	1	1	1	1.	1	1	1	1	0 (1a)	10a)

NUMBER IN CLASS	\＃	50, ，	23	33	28	2＊＊＊＊	1（4，3）	$2(4,4)$	6（6，3）	5（6，4），	4（6，4）	4（4，5）
SHIP CLASS NAME	［8］	DE 1918	DE 1939A	DE 1939B	DE 1940	DE 1941	SS 1924	SS 1925	SS 1927	SS 1928	SS 1929	SS 1930
ALLIED	Y／N	Y	Y	Y	Y	Y	Y	Y ，，，，\％	Y	Y $2 \times$	Y	Y
SEAPLANE	Y／N	N	N	N	N	N	N	N ${ }_{\text {，}}$ ，	N	N	N	N
SHIP TYPE	0－4	2	2	2	2	2	3	3	3	3．4．a，	3	\％${ }^{3}$
MAXIMUM SPEED	0.45	35	28	27＊＊＊	27	26	14	15\％\％	18	18，\％	18	14
DISPLACEMENT	0－31	0，	1	1，\％ ，	1	4	1	1 \downarrow \＆	1	，，，1 $1 \times$,	1	0
HEAVY AA	0－31	1	4	6.	4	6	0	0	0	0	0	0
LIGHT AA	0－31	1	1	2，＊＊	2	1，\％	0	0	1	1	1	1
ARMOUR	0－15	0% ，	0	0 ，\％\＆	0	0	0	0	0	0	0	0
PRIMARY GUNS	0－15	0	0	0，\％，尔	0	0	0	0	0	0	0	0
SECONDARY GUNS	0－15	2	0	$0, \ldots, 4$	0	0	1	，＜，1，\％	1	1\％${ }^{\text {a }}$ ， ，	1	1
TORPEDOTUBES	0－15	3.	0	0	2		8		8	8，	8	6.
VULNERABILITY	0－7	3 ．	5	5，«r ，	5	$5 * *$	2	2，	2	3	4	3
ANTI－SUBMARINE	0－7	3.	3	3，	2	2	0	0 ，\times ，	0	0 ，\％	0	$\geqslant 8$
TORPEDO LOADS	0－3	1.	0		1	4	2	2＊＊＊，	2	，＋，2，	2	2

NUMBER IN CLASS	\＃	3（4，5）	$6(4,4)$	$8(4,5)$	15（4，4）	$3(2,5)$	16（4，4）	$46(3,5)$	$33(5,4)$	$17(5,4)$	8（5，4）	22（4，5）
SHIP CLASS NAME	［8］	SS 1931A．	SS 1931B	SS． 1933	SS 1936	SS 1937	SS 1939A	SS 1939B．	SS 1940	SS 1941	SS 1942A	SS 1942B
ALLIED	Y／N		Y	， Y Y ，	Y	，Y	Y		Y	Y	Y	Y
SEAPLANE	Y／N	N	N	N	N	N	N	， N	N	N	N	\％
SHIP TYPE	0．4	3	3	， 3	3	3＊＊＊	3	3\％${ }^{1}$	3	3	3	$\geqslant 3$
MAXIMUM SPEED	0－45	$22,4 \%$	16	115	15	11	15	11×8.	15	15	15	\％， 111
DISPLACEMENT	0－31	1	1	0	1	0	1	－	0	1	0	0
HEAVY AA	0．31	0	0	0	0	$0 . \times$ ，	0	， 0	0	0	0	0
LIGHT AA	0．31	1，	1	1.	1	1	1	1	1	1，\％$\%$ ，	1	1
ARMOUR	0－15	0	0	0	0	0	0	0	0	0	0	0
PRIMARY GUNS	0－15	0	0	0	0	0	0	0	0	0	0	0
SECONDARY GUNS	0－15	1	1	4	1	1.	1	0	1	1	1	1
TORPEDO TUBES	0－15	6.	6	6.	10	6.	11	4	7	11	6	4
VULNERABILITY	0.7	4 4，＜	4	4.	5	4.	4	5	5	5	5	6
ANTI－SUBMARINE	0.7	0	0	0	0	0	0	O \％，成	0	0，\％	0	0
TORPEDOLOADS	0.3	2	2		2	2	2	2，『～	2	$2 * * *$	2	2

Questions and Answers
 A forum of advice for our customers

Continued from Page 32

indications of an ultimate truth， something that will not be known until the end of the game．Use them in conjunction with other evidence and your own hunches as to what happened，but never trust them．Obviously，as you play more games you will get better at reading between the lines．
Unless you are a masochist or in a multi－ player game，the effort of playing the land theatres is probably not worth it．Let the computer remember to wake up the bomber crews at 3 a．m．，you have better things to do．Sighting reports are more reliable in one sense；there will be something there．Whether it is the CV＇s
typically reported is another matter． However，this imprecision can be used to your advantage．Any admiral of the time would gladly have swapped two capital ships for two enemy carriers．Use your capital ships to screen your carriers． They stand a good chance of being reported as carriers and might suck in a strike．This has lots of advantages．
Capital ships，especially battleships，are less vulnerable than carriers，and will shoot down their share of planes．The first strike from a carrier is always the most efficient simply because the act of launching has guaranteed casualties as planes get lost，are hit by flak or damaged／lost on landing，and if you can absorb that first strike without losing either planes or carriers yourself，you have definitely shifted the odds in your favour．
You may find yourself in an ideal position for a counter strike since the enemy will have to go on station（i．e．remain in the same hex）for an absolute minimum of two hours until their strike returns．Even if you don＇t spot the enemy carriers，you should have a much better idea of where they are，while they may have no idea where you are．

Keep a close watch on the status of your task groups，the＇spotted＇flag indicates that you have seen the enemy search plane who has spotted you．（This is by no means guaranteed to happen，you will often remain blissfully unaware of your new status as a target．）If you are spotted，and think the enemy is inside his strike range，you must act．Is there some bad weather you can hide in？．Are there substitutes you can leave behind while the carriers try to get away（transports or oilers will do as well as capital ships）？If not，you are in trouble．
Try to launch your strikes at targets within normal range of your torpedo bombers and your fighter escort．Strikes are best done as＇cohesive＇unless there are overwhelming reasons．Unescorted strikes up against CAP have a tough time，and the bombing efficiency of the survivors will be reduced．If you have to change search pattern arcs during play， it＇s best to do it at night time to minimize the confusion which may occur during the change over．

EDITOR'S CHANCE

Continued from Page 3

The scenario briefing includes weather, availability of air/naval support, length and national characteristics.
Provision has been made for amphibious and airborne assaults.
The scenarios selected for the initial release will probably include, among others, Bastogne, Crete, Wainwright's defense of Luzon in 1941-2, Battleaxe and a tank battle from the Kursk clash in 1943.

Issue 3 of Run 5 will also include a scenario for the game.
We expect anyone interested in World War II land combat will find something of value in our creation.

GENERAL REMARKS

As I was saying at the beginning.
The greatest strength of the computer as a tool for simulating historical events is that both the event and the decision making processes of the protagonists can be recreated.
There are many board games on the market today which do a terrific job of
simulating an historical event. The mechanics, however, by which this achievement is made have little or nothing to do with military decision making.
By their very nature, the player must not only make the decisions of every level of command in the game but must also implement these decisions. The skills encouraged for the manipulation of these mechanics have more to do with logic than strategy.
That's not to say they are not enjoyable; they just don't involve strategic decision making.
Before I get any further into deep water, l'd best clear up one thing.
Strategy board games are splendid entertainments; both Roger and I play them in preference to computer games. What I'm trying to explain is the nature of their limitations. In terms of maximizing their potential, state-of-the-art board games today have probably achieved a 90% success. Using the same criteria, strategy computer games would be lucky to have reached 10% of their potential. And I certainly don't exclude our games from this evaluation.
The media are just different and, as I suspect, time will judge which has the most potential for the future.
I am constantly dismayed by the number of computer games which strive to be imitations of board games! By necessity,
units must be moved hex by hex across the map in a board game; there is no proper reason to perpetuate that compromise in a computer game. Troops get told to go somewhere and do something. . . then it's up to them. Furthermore, the use of hex by hex movement routines make it almost impossible for the computer to control its forces sensibly.
The routines by which a-human implements his decisions in the game must be ones that the computer can emulate. Unless the computer is capable of controlling any and every part of the forces on either side, it's not possible to cast the player in a role; he must still be the commander of every unit.
What we're trying to do, albeit with limited success, is to build a game environment wherein a player need only be responsible for the forces of the personage he represents. He is not responsible for the direct operation of the forces superior and subordinate to him. Moreover, these other personages must be able to communicate with him and he with them.
It will be interesting to see just how successfully our next two games do this. It's always much easier to point out what's wrong than to fix it up!

BATTLEFRONT Corps Level Command in World War II

$$
\begin{aligned}
& \text { ROAD TO APPOMATTOX } \\
& \text { The Civil War Years, 1861-1865 }
\end{aligned}
$$

THE FINAL GOUNTDOWN

An Adventure in Time 7th December 1941/1981 A SURPRISE SCENARIO FOR CARRIERS AT WAR

Those of you who have seen the movie of the same name will doubtlessly know what this scenario is all about. For those who haven't, here's a capsule summary.

USS Nimitz, Kirk Douglas commanding, runs into some funny weather north of Hawaii. The time was 1981 but as events transpire it's now somehow 6th December, 1941. They've found that elusive hole in time (space?); a phenomenon available, unfortunately, only to movie makers.
After about half a movies' worth of moralizing, the USS Nimitz decides to get those Japs. Too late! The time hole pops up again and our heroes return to the present.

With Carriers at War we can (more or less) examine what could have happened had the Tomcats got among pidgeons so to speak.
The following data needs to be added to the Pearl Harbour scenario.

1. Plane Types. Add \#23. (F-14, 1, 0, $14,14,20,3,3,3,15,63,7,7,7,7, Y, Y$, N, Y, N, N). Add \#24. (E-2A, 2, 4, 31, 31, $31,3,3,3,15,0,0,7,7,7, Y, Y, N, N, Y$, N).
2. Squadrons. Add \# 65-68. (Each 23, $18,7,3,3, N, N, Y)$. Add \#69 (24, 12, 7 , 3, 3, Y, Y, Y).
3. Ship Class. Add \#36. (CV TOUGH, Y, N, 0, 38, 54, 31, 31, 15, 0, 0, 0, 7, 7, 0).
4. Carrier. Add \#9. (NIMITZ, 100, 36, 8, $65,66,67,68,69,20,15,7,3,3)$.
5. Task Group. Add \#8 Ally. (NIMITZ, $0,0,5,31,3,3,1, Y, x, y=81,32$, search = S-SW).
6. Brief. Make the following changes to the Allied data. Morale =3, Radar Tech $=$ 3 , Aerial torpedoes $=3$, Surprised $=N$).
7. Names. Add K. Douglas as the commander for Allied Task Force 3.

It's probably going to be a trifle hard to find someone to surprise with this entertainment, but if you can it should be amusing.

Don't forget the Origins Convention in Los Angeles from 3rd-6th July Come and see us in the Exhibitor Hall

STratice sious coove CAMIES ARE DISTRBUTEED BY

ELECTRONIC ARTS

2755 CAMPUS DRIVE SAN MATEO, CA. 94403 U.S.A. (415) 571-7171

BALBOA GAME CO.
630 W. WILLOW ST LONG BEACH, CA. 90806 U.S.A.
SOFTGAME SERVICES
1425 CENTURY, SUITE 105 CARROLTON, TX. 75006 U.S.A.

HOBBY GAMES INC.

661 NORTH LINCOLN AVE LINCOLNWOOD, III. 60645 U.S.A.
TEVEX INC.
1710 WILWAT DR, SUITE E NORCROSS, GA. 30093 U.S.A.
OZISOFT
SUITE 33, 8-24 KIPPAX ST SURRY HILLS, 2O10. AUSTRALIA
JEDKO GAMES
134 COCHRANES RD MOORABBIN, 3189. AUSTRALIA

IMAGINEERING

77 DUNNING AVE ROSEBERY, 2018. AUSTRALIA

$$
\begin{aligned}
& \text { DICK SMITH ELECT. } \\
& \text { WATERLOO RD NORTH RYDE, 2113. AUSTRALIA }
\end{aligned}
$$

Up that river lies the African
 Adventure of your imagination.

The mysterious Dark Continent. Where the mighty Kilimanjaro towers over the Source of the Nile. Where the Congo snakes through steaming jungles and the scorching Sahara sun bleaches men's bones. Africa. Where legends of secret treasure drive men mad with desire. And where an adventurer can still find glory and gold...or a lonely death far from home.

You have inherited a madman's diary ... and his dream to find the tomb of an ancient pharaoh.
Ancient songs still sung by tribal historians contain clues to the hidden tomb of a fabulously wealthy pharaoh. The madman's last feverish words drive you onward: "I now know it does exist. I am so close, but so near death. If you hear no more from me, then warn those that follow: this is not a journey for the weak of spirit or dull of mind. Come prepared."-H. Primm, May 21, 1889

A Living Map of Africa
11 million square miles stuffed into your computer. Navigate 17 rivers. Hack throughjungle and swamp. Sail to ten cities. Learn the ways of 22 tribes. Explore savannah, deserts and mountains. It's all geographically accurate.

Follow Your Dreams

Set your course and go for it. The computer automatically maps your progress and keeps your journal. If you get lost, it can tell you "The River Nile." What it won't say is "about to get sucked over the Kabelega Falls."

Decipher Native Clues
Local myths will help, if you can get the natives to talk. Enter their huts. Learn their customs. Pass out some bribes. The chief might tell you, "Look where the sun rises over the Childless Waters." Now try to figure it out.

ElECTRONIC ARTS'"

[^0]: The cover painting, by Mitch Lovet1, shows HMS Prince of Wales under attack from G4M1's (the tamed Betty bomber) of the Kanoya Naval Air Group.

[^1]: Before starting play, please read these remarks.
 The forces available to Soviet Russia are optional and their use is covered under the appropriate variation. Only the forces of Germany and Poland are used in the historical scenario. Land hexes in Poland, Latvia, Lithuania and Rumania should be identified as Allied. All others should be identified as Axis.

